[1]代晓鹏,雷 飞,张天昊.基于最优控制策略的逆变器散热结构优化[J].控制与信息技术,2020,(02):55.[doi:10.13889/j.issn.2096-5427.2020.01.200]
 DAI Xiaopeng,LEI Fei,ZHANG Tianhao.Heat Dissipation Structure Optimization of Inverter Based on the Optimal Control Strategy[J].High Power Converter Technology,2020,(02):55.[doi:10.13889/j.issn.2096-5427.2020.01.200]
点击复制

基于最优控制策略的逆变器散热结构优化()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2020年02期
页码:
55
栏目:
电力与传动控制
出版日期:
2020-04-05

文章信息/Info

Title:
Heat Dissipation Structure Optimization of Inverter Based on the Optimal Control Strategy
文章编号:
2096-5427(2020)02-0055-05
作者:
代晓鹏雷 飞张天昊
(1. 湖南大学 汽车车身先进设计制造国家重点实验室,湖南 长沙 410082; 2. 湖南大学 机械与运载工程学院,湖南 长沙 410082)
Author(s):
DAI XiaopengLEI Fei ZHANG Tianhao
( 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China; 2. Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China )
关键词:
IGBT 模块最大转矩电流比热管风冷散热代理模型多岛遗传算法
Keywords:
IGBT module MTPA(maximum torque per ampere) heat pipe air cooling surrogate model MIGA(multi-island genetic algorithm)
分类号:
TN712;TM464
DOI:
10.13889/j.issn.2096-5427.2020.01.200
文献标志码:
A
摘要:
为了提高电动汽车用永磁同步电机逆变器 IGBT 模块的可靠性,文章从热损耗和散热两方面对逆变器可靠性进行研究。首先通过对比分析永磁同步电机在同一工况下d轴电枢电流为零(id=0)和最大转矩电流比(MTPA)两种控制方式下逆变器中 IGBT 模块的损耗,发现 MTPA 控制策略优于 id=0 控制策略;接着,基于 MTPA 控制策略,设计了一种热管和风冷相结合的散热结构,相较原风冷散热结构,采用新型散热方式可使芯片最高工作温度降低 8.49 ℃;最后,采用最优拉丁超立方抽样构建响应面代理模型(RSM),并采用多岛遗传算法 (MIGA) 对代理模型进行优化处理。经仿真验证,优化处理后的“热管 + 风冷”散热结构使得芯片最高温度又降低了 15.12 ℃,有效提升了 IGBT 模块的热可靠性。
Abstract:
In order to improve the reliability of the IGBT module used in the inverter for permanent magnet synchronous motor of electric vehicle, this paper studied the reliability of the inverter from two aspects: heat loss and heat dissipation. Through the loss comparison analysis of the IGBT module in the inverter under the same condition of d-axis armature current zero (id = 0) and maximum torque per ampere (MTPA), it is found that the MTPA control strategy is better than the id = 0 control strategy. Then,based on the MTPA control strategy, a heat pipe and air cooling combined cooling structure was designed. Compared with the original air cooling structure, the new cooling method can reduce the maximum working temperature of the chips by 8.49 ℃ . In this paper, the optimal Latin hypercube sampling is used to construct the response surface surrogate model (RSM), and the multi-island genetic algorithm (MIGA) is used to optimize the surrogate model. It is verified that the optimized heat pipe air-cooled heat dissipation structure reduces the maximum chip temperature by 15.12 ℃ , which effectively improves the thermal reliability of the IGBT module.

参考文献/References:

[1] LU J Z, SHEN L M, HUANG Q J, et al. Investigation of a rectangular heat pipe radiator with parallel heat flow structure for cooling high power IGBT modules[J]. International Journal of Thermal Sciences, 2019,135: 83-93.
[2] SARKAR A, ISSAC B. Importance of thermal radiation from heat sink in cooling of three phase PWM inverter kept inside an evacuated chamber[J]. Engineering Science and Technology,an International Journal, 2017,20: 542-551.
 [3] XIA G H, ZHUANG D W, DING G L. Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink[J]. International Journal of Refrigeration, 2019,99: 69- 79.
[4] 张健 . 电力电子器件及其装置的散热结构优化研究 [D]. 深圳:哈尔滨工业大学 , 2015.
[5] REN G F, TIAN F, YANG L. The research of thermal design for vehicle controller based on simulation[J]. Applied Thermal Engineering, 2013, 58: 420-429.
[6] 解小刚 , 陈 进 . 采 用 id=0 的永磁同步电机矢量控制系统 MATLAB/Simulink 仿真 [J]. 新型工业化,2016, 6(5): 47-54.
[7] 曹晖 , 罗峰 , 周盼 , 等 . 永磁同步电机最大转矩电流比控制的仿真研究 [J]. 微电机 , 2015,48(6): 55-59.
 [8] Infineon Technologies. IGBT-Module FS800R07A2E3[EB/OL]. (2013-01-01) [2019-07-08]. http: ∥ www.infineon.com.
[9] 焦明亮 , 李云 , 吴春冬 , 等 . 一种电动汽车逆变器 IGBT 功率损耗和结温的近似计算方法 [J]. 大功率变流技术 , 2015 (5): 58-63.
[10] 焦学军 , 盘明旺 , 贺荣 . 某系统散热器用热管传热性能试验研究 [J]. 热能动力工程,2016, 31(10): 20-24.
 [11] 郭俊龙 , 马立元 , 李永军 , 等 . 基于 Kriging 代理模型的结构损伤识别新方法 [J]. 中国机械工程 , 2016, 27(9): 1203-1207.
 [12] SHI X J, LI X, MU Y J, et al. Geometry parameters optimization for a microchannel heat sink with secondary flow channel[J]. International Communications in Heat and Mass Transfer, 2019,104: 89-100.
[13] 李建华 , 毛文贵 , 傅彩明 . 基于径向基函数的吊装定子铁心材料参数反求 [J]. 大电机技术,2014 (1): 28-30.
 [14] 韩露男 , 于兰峰 , 潘益明 . 基于响应面法的龙门混凝土浇灌机优化设计 [J]. 现代制造工程 , 2019(5): 47-51.
[15] CHEN S Q, PENG X B, BAO N S, et al. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module[J]. Applied Thermal Engineering, 2019, 156: 324-339.

相似文献/References:

[1]陈明锋,雷万钧,付翀丽,等.T 型三电平结构SVG 的损耗研究[J].控制与信息技术,2015,(04):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
 CHEN Mingfeng,LEI Wanjun,FU Chongli,et al.Research on the Loss of Three-level T-type Inverter in SVG[J].High Power Converter Technology,2015,(02):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
[2]王彦刚,戴小平,吴义伯,等.IGBT 模块功率损耗的产生机理、计算及模拟[J].控制与信息技术,2015,(02):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
 WANG Yangang,DAI Xiaoping,WU Yibo,et al.The Mechanism, Calculation and Simulation of Power Loss for IGBT Modules[J].High Power Converter Technology,2015,(02):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
[3]方 杰,彭勇殿,窦泽春,等.高压IGBT 模块中AlN 衬板的局部放电特性研究[J].控制与信息技术,2015,(05):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
 FANG Jie,PENG Yongdian,DOU Zechun,et al.Research on Partial Discharge Behavior of AlN Substrate in High Voltage IGBT Module[J].High Power Converter Technology,2015,(02):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
[4]李世平,奉琴,陈彦,等.IGBT模块中续流二极管关断过程失效机理分析[J].控制与信息技术,2014,(05):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
 LI Shiping,FENG Qin,CHEN Yan,et al.Analysis of Turn-off Failure Mechanism for the Freewheeling Diode in IGBT Module[J].High Power Converter Technology,2014,(02):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
[5]李 寒,曾 雄,徐凝华,等.超声扫描在IGBT 模块质量分析中的应用[J].控制与信息技术,2016,(02):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
 LI Han,ZENG Xiong,XU Ninghua,et al.Application of Acoustic Scanning Technology in Quality Analysis of IGBT Module[J].High Power Converter Technology,2016,(02):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
[6]文 驰,李保国,熊 辉,等.IGBT 模块杂散电感分析与仿真[J].控制与信息技术,2016,(04):30.[doi:10.13889/j.issn.2095-3631.2016.04.006]
 WEN Chi,LI Baoguo,XIONG Hui,et al.Analysis and Simulation of Stray Inductance of IGBT Module[J].High Power Converter Technology,2016,(02):30.[doi:10.13889/j.issn.2095-3631.2016.04.006]
[7]徐凝华,吴义伯,刘国友,等.混合动力/电动汽车用IGBT功率模块的最新封装技术[J].控制与信息技术,2013,(01):1.[doi:10.13889/j.issn.2095-3631.2013.01.001]
 XU Ning-hua,WU Yi-bo,LIU Guo-you,et al.The Latest Packing Technology for IGBT Module in HEV/EV Application[J].High Power Converter Technology,2013,(02):1.[doi:10.13889/j.issn.2095-3631.2013.01.001]
[8]吴煜东,万正芬,彭勇殿.高压IGBT模块AlN覆铜衬板特性研究[J].控制与信息技术,2012,(05):1.[doi:10.13889/j.issn.2095-3631.2012.05.001]
 WU Yu-dong,WAN Zheng-fen,PENG Yong-dian.The Investigation of Copper Metalized AlN for High Voltage IGBT Module[J].High Power Converter Technology,2012,(02):1.[doi:10.13889/j.issn.2095-3631.2012.05.001]
[9]袁 勇,等.主功率端子压接技术在IGBT 模块高集成设计中的应用研究[J].控制与信息技术,2017,(01):39.[doi:10.13889/j.issn.2095-3631.2017.01.008]
 YUAN Yong,XIONG Hui,et al.Research on Pressure-contact Technology of Power Terminals for the Design of High-integration IGBT Module[J].High Power Converter Technology,2017,(02):39.[doi:10.13889/j.issn.2095-3631.2017.01.008]
[10]常桂钦,等.基板拱度类型对IGBT 模块应力的影响[J].控制与信息技术,2017,(01):45.[doi:10.13889/j.issn.2095-3631.2017.01.009]
 CHANG Guiqin,DOU Zechun,et al.Effects of Baseplate Bow Type on Stress of IGBT Module[J].High Power Converter Technology,2017,(02):45.[doi:10.13889/j.issn.2095-3631.2017.01.009]
[11]代晓鹏,雷 飞,张天昊. 基于最优控制策略的逆变器散热结构优化[J].控制与信息技术,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.200]
 DAI Xiaopeng,LEI Fei,ZHANG Tianhao. Heat Dissipation Structure Optimization of Inverter Based on the Optimal Control Strategy[J].High Power Converter Technology,2020,(02):1.[doi:10.13889/j.issn.2096-5427.2020.01.200]

备注/Memo

备注/Memo:
收稿日期:2019-08-14
作者简介:代晓鹏(1993—),男,硕士研究生,研究方向为新能源汽车控制器热设计。
基金项目:国家重点研发计划(2018YFB0104501)
更新日期/Last Update: 2020-05-08