[1]高首聪,顾后生.基于下垂控制的微电网多逆变器并联运行研究[J].控制与信息技术,2020,(02):41.[doi:10.13889/j.issn.2096-5427.2020.02.008]
 GAO Shoucong,GU Housheng.Research on the Parallel Operation of Micro-grid Multiple Inverters Based on Droop Control[J].High Power Converter Technology,2020,(02):41.[doi:10.13889/j.issn.2096-5427.2020.02.008]
点击复制

基于下垂控制的微电网多逆变器并联运行研究()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2020年02期
页码:
41
栏目:
电力与传动控制
出版日期:
2020-04-05

文章信息/Info

Title:
Research on the Parallel Operation of Micro-grid Multiple Inverters Based on Droop Control
文章编号:
2096-5427(2020)02-0041-08
作者:
高首聪 1 顾后生 2
(1. 中车株洲电力机车研究所有限公司,湖南 株洲 412001;2. 天津大学,天津 300072)
Author(s):
GAO Shoucong1 GU Housheng2
( 1. CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China; 2. Tianjin University, Tianjin 300072, China )
关键词:
微电网逆变器下垂控制虚拟阻抗特征值法并联控制
Keywords:
micro-grid inverter droop control virtual impedance eigenvalue method parallel control
分类号:
TM464
DOI:
10.13889/j.issn.2096-5427.2020.02.008
文献标志码:
A
摘要:
多逆变器并联运行能有效提高微电网系统容量和可再生能源发电能效。文章借鉴同步发电机的运行原理,采用下垂控制进行多逆变器的柔性互联,以实现无互联通信下多逆变器并联运行的功率主动分配,满足逆变器即插即用功能要求。文章介绍了电压电流双环控制器的设计方法,并分析了其控制参数和阶跃响应之间的关系;针对低压微电网阻性特点,设计了虚拟阻抗环节,以满足下垂控制感性要求,并增强并联逆变器功率均分效果;运用特征值法分析了关键参数对系统稳定性的影响,并进行了相关数值仿真验证。最后搭建物理实验平台,实验结果验证了所提控制的有效性。
Abstract:
Parallel operation of multiple inverters can effectively improve the capacity of micro-grid system and energy efficiency of renewable energy generation. In this paper, the operation principle of synchronous generator is used for reference, and the flexible interconnection of multiple inverters is carried out by using droop control, which can realize the active power distribution of multiple inverters in parallel operation without interconnection communication, meeting the plug and play of inverters. This paper introduced a design method of voltage and current dual loop controller, and analyzed the relationship between the control parameters and the response. For the problem of the resistance characteristics of low voltage micro-grid, virtual impedance is designed to meet the inductance requirements of droop control, which can enhance the power sharing effect of parallel inverters. The influence of key parameters on system stability was analyzed by means of eigenvalue method, and the correlation was verified by numerical simulation. Finally, a physical experiment platform was built and the effectiveness of the proposed control was verified.

参考文献/References:

[1] 王成山 , 武震 , 李鹏 . 微电网关键技术研究 [J]. 电工技术学报 , 2014, 29(2): 1-12.
[2] 朱永强 , 贾利虎 , 蔡冰倩 , 等 . 交直流混合微电网拓扑与基本控制策略综述 [J]. 高电压技术 , 2016, 42(9): 2756-2767.
 [3] LOH P C, LI D, CHAI Y K, et al. Autonomous Operation of Hybrid Microgrid with AC and DC Subgrids [J]. IEEE Transactions on Power Electronics, 2013, 28(5), 2214-2223.
[4] 刘畅 , 卓建坤 , 赵东明 , 等 . 利用储能系统实现可再生能源微电网灵活安全运行的研究综述 [J]. 中国电机工程学报 , 2020, 40(1): 1-18.
[5] 王丹 , 孟政吉 , 贾宏杰 , 等 . 面向新型城镇的能源互联系统规划关键技术研究及展望 [J]. 电力系统自动化 , 2019, 43(14): 16-28.
[6] 李霞林 , 郭力 , 王成山 , 等 . 直流微电网关键技术研究综述 [J]. 中国电机工程学报 , 2016, 36(1): 2-17.
 [7] 张平 , 王俊辉 , 胡朝燕 , 等 . 基于分布式控制系统的 500kW 光伏逆变器设计 [J]. 电气自动化 , 2014, 36(4): 41-42,73.
 [8] HE J W, LI Y W, WANG C S, et al. Hybrid Microgrid with Parallel and Series-Connected Microconverters [J]. IEEE Transactions on Power Electronics, 2018, 33(6): 4817-4831.
[9] CHEN Y D, GUERRERO J M, SHUAI Z K, et al. Fast Reactive Power Sharing, Circulating Current and Resonance Suppression for Parallel Inverters Using Resistive-Capacitive Output Impedance [J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5524-5537.
[10] 陈杰 , 刘名凹 , 陈新 , 等 . 基于下垂控制的逆变器无线并联与环流抑制技术 [J]. 电工技术学报 , 2018, 33(7): 1450-1460.
[11] 阳敏 , 罗安 , 肖华根 , 等 . 多逆变器并联系统环流分析及抑制方法 [J]. 电力系统及其自动化学报 , 2017, 29(10): 6-11.
 [12] HAN Y, LI H, SHEN P, et al. Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids [J]. IEEE Transactions on Power Electronics, 2017, 32(3): 2427-2451.
[13] 许恩泽 , 刘刚 , 孙健 , 等 . 基于虚拟同步机的集中式储能变流器研制 [J]. 电力电子技术 , 2018, 52(7): 97-102.
[14] PRASANNA V, SRINIVASAN D, PANDA S K. Design, analysis and implementation of a four-tier centralized control architecture for intelligent operation of grid-connected microgrids [C]//2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Trivandrum: IEEE,2016.
 [15] ABESSI A, VAHIDINASSAB V, GHAZIZADEH M S. Centralized Support Distributed Voltage Control by Using End-Users as Reactive Power Support[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 178- 188.
 [16] 朱永强 , 王福源 , 赵娜 , 等 . 主从控制混合微电网中互联变流器控制策略 [J]. 电力建设 , 2018, 39(8): 102-110.
[17] 付子义 , 王艺龙 . 基于主从结构微网控制策略运行分析 [J]. 电子测量技术 , 2016, 39(10):6-10.
 [18] LAI J G, LU X Q, YU X H, et al. Distributed Multi-DER Cooperative Control for Master-Slave-Organized Microgrid Networks with Limited Communication Bandwidth [J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3443-3456.
 [19] SCHIFFER J, SEEL T, RAISCH J, et al. Voltage Stability and Reactive Power Sharing in Inverter-Based Microgrids with Consensus-Based Distributed Voltage Control [J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 96-109.
 [20] LI Z W, ZANG C Z, ZENG P, et al. Fully Distributed Hierarchical Control of Parallel Grid-Supporting Inverters in Islanded AC Microgrids [J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 679-690.
[21] 刘海波 , 毛承雄 , 陆继明 , 等 . 基于分散逻辑的电子电力变压器并联控制技术 [J]. 高电压技术 , 2007, 33(4): 151-156.
[22] 汤胜清 , 曾正 , 程冲 , 等 . 微电网中多功能并网逆变器的无线协调控制 [J]. 电力系统自动化 , 2015, 39(9): 200-207.
 [23] LIANG H, CHOI B J, ZHUANG W H, et al. Stability Enhancement of Decentralized Inverter Control Through Wireless Communications in Microgrids [J]. IEEE Transactions on Smart Grid, 2013, 4(1): 321- 331.
[24] ZHONG Q C, ZENG Y. Universal Droop Control of Inverters with Different Types of Output Impedance [J]. IEEE Access, 2016, 4: 702- 712.
[25] 章伟明 , 赵巧娥 , 张强 , 等 . 孤岛运行时逆变器并联改进下垂控制策略 [J]. 电气自动化 , 2019, 41(4): 76-79.
[26] 陈杰 , 闫震宇 , 赵冰 , 等 . 下垂控制三相逆变器阻抗建模与并网特性分析 [J]. 中国电机工程学报,2019, 39(16): 4846-4856,4986.
 [27] 孟明 , 陈世 , 赵树军 , 等 . 新能源微电网研究综述 [J]. 现代电力, 2017, 34(1): 1-7.
 [28] 郭力 , 张绍辉 , 李霞林 , 等 . 考虑电网分时电价的直流微电网分层协调控制 [J]. 电网技术 , 2016, 40(7): 1992-2000.

相似文献/References:

[1]吴春冬,李 云,焦明亮,等.纯电动汽车逆变器直流侧纹波分析与计算[J].控制与信息技术,2015,(03):47.[doi:10.13889/j.issn.2095-3631.2015.03.011]
 WU Chundong,LI Yun,JIAO Mingliang,et al.Analysis and Calculation of DC-link Ripple for the Inverter in Electric Vehicle[J].High Power Converter Technology,2015,(02):47.[doi:10.13889/j.issn.2095-3631.2015.03.011]
[2]贾要勤,赵永飞,胡长华.独立运行微电网中非线性负载的谐波功率分配和谐波补偿[J].控制与信息技术,2015,(04):30.[doi:10.13889/j.issn.2095-3631.2015.04.006]
 JIA Yaoqin,ZHAO Yongfei,HU Changhua.Harmonic Power Distribution and Harmonic Compensation in the Standalone Microgrid with Nonlinear Loads[J].High Power Converter Technology,2015,(02):30.[doi:10.13889/j.issn.2095-3631.2015.04.006]
[3]丁官元,李银玲,李 凯.三电平NPC逆变器共模电压的抑制[J].控制与信息技术,2015,(01):20.[doi:10.13889/j.issn.2095-3631.2015.01.004]
 DING Guanyuan,LI Yinling,LI Kai.Research of the Common-mode Voltage Inhibition for Three-level NPC Inverter[J].High Power Converter Technology,2015,(02):20.[doi:10.13889/j.issn.2095-3631.2015.01.004]
[4]焦明亮,李 云,吴春冬,等.一种电动汽车逆变器IGBT 功率损耗和结温的近似计算方法[J].控制与信息技术,2015,(05):58.[doi:10.13889/j.issn.2095-3631.2015.05.012]
 JIAO Mingliang,LI Yun,WU Chundong,et al.An Approximate Calculation Method of IGBT Power Losses and Junction Temperatures for Electric Vehicle Inverter[J].High Power Converter Technology,2015,(02):58.[doi:10.13889/j.issn.2095-3631.2015.05.012]
[5]陈天成.微网半实物仿真平台的设计研究[J].控制与信息技术,2014,(04):50.[doi:10.13889/j.issn.2095-3631.2014.04.012]
 CHEN Tian-cheng.Research on the Design of Hardware-in-loop Simulation Platform for Micro-grid[J].High Power Converter Technology,2014,(02):50.[doi:10.13889/j.issn.2095-3631.2014.04.012]
[6]王佳佳,陈 湘,谭 渺,等.永磁牵引电机动车组用大功率辅助变流器[J].控制与信息技术,2015,(06):45.[doi:10.13889/j.issn.2095-3631.2015.06.010]
 WANG Jiajia,CHEN Xiang,TAN Miao,et al.High Power Auxiliary Converter for EMU with Permanent Magnet Traction Motor[J].High Power Converter Technology,2015,(02):45.[doi:10.13889/j.issn.2095-3631.2015.06.010]
[7]姚明,郭积晶.基于电池组件PID效应的光伏逆变器设计[J].控制与信息技术,2014,(03):49.[doi:10.13889/j.issn.2095-3631.2014.03.011]
 YAO Ming,GUO Ji-jing.Design of Photovoltaic Inverter Based on the Effect of Potential Induced Degradation for Solar Cells[J].High Power Converter Technology,2014,(02):49.[doi:10.13889/j.issn.2095-3631.2014.03.011]
[8]蹇芳,李志勇.光伏逆变器技术现状与发展[J].控制与信息技术,2014,(03):5.[doi:10.13889/j.issn.2095-3631.2014.03.005]
 JIAN Fang,LI Zhi-yong.Technology Status and Future Development of PV Inverter[J].High Power Converter Technology,2014,(02):5.[doi:10.13889/j.issn.2095-3631.2014.03.005]
[9]管仁德,唐洲,廖远辉,等.基于双模块并联的500kW光伏并网逆变器[J].控制与信息技术,2014,(03):32.[doi:10.13889/j.issn.2095-3631.2014.03.001]
 GUAN Ren-de,TANG Zhou,LIAO Yuan-hui,et al.A 500 kW Grid-connected Photovoltaic Inverter with Double Modules Paralleling[J].High Power Converter Technology,2014,(02):32.[doi:10.13889/j.issn.2095-3631.2014.03.001]
[10]彭乐.二极管中点箝位型三电平逆变器低感母排的叠层布置[J].控制与信息技术,2014,(02):14.[doi:10.13889/j.issn.2095-3631.2014.02.005]
 PENGLe.Layout of Laminated Bus Bar for Diode Neutral Point Clamped Three-level Inverter[J].High Power Converter Technology,2014,(02):14.[doi:10.13889/j.issn.2095-3631.2014.02.005]

备注/Memo

备注/Memo:
收稿日期:2020-01-15
作者简介:高首聪(1976—),男,高级工程师,主要从事风力发电、微电网及综合能源相关技术研究工作。
更新日期/Last Update: 2020-05-08