[1]王洪瑞,等.双层结构模型预测控制稳态优化层 QP 与 LP 求解模态分析[J].控制与信息技术,2020,(02):1.[doi:10.13889/j.issn.2096-5427.2020.01.500]
 WANG Hongrui,,et al.Modal Analysis of QP and LP Solution in Steady-state Optimization Layer of Two-layer Structure MPC[J].High Power Converter Technology,2020,(02):1.[doi:10.13889/j.issn.2096-5427.2020.01.500]
点击复制

双层结构模型预测控制稳态优化层 QP 与 LP 求解模态分析()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2020年02期
页码:
1
栏目:
控制理论与应用
出版日期:
2020-04-05

文章信息/Info

Title:
Modal Analysis of QP and LP Solution in Steady-state Optimization Layer of Two-layer Structure MPC
文章编号:
2096-5427(2020)02-0001-07
作者:
王洪瑞 1 2 3 4张 鑫 1 2 3刘博文 1 2 3 4蔺 娜 5 邹 涛 6
(1. 中国科学院 网络化控制系统重点实验室,辽宁 沈阳 110016;2. 中国科学院 沈阳自动化研究所,辽宁 沈阳 110016; 3. 中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110169;4. 中国科学院大学,北京 100049; 5. 国家科技风险开发事业中心,北京 100038;6. 广州大学,广东 广州 510006)
Author(s):
WANG Hongrui 1 2 3 4 ZHANG Xin 1 2 3 LIU Bowen 1 2 3 4 LIN Na5 ZOU Tao6
( 1. Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang,Liaoning 110016, China; 2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; 3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110169, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China; 5. National Science and Technology Venture Capital Development Center, Beijing 100038,China; 6.Guangzhou University, Guangzhou ,Guangdong 510006, China )
关键词:
模型预测控制稳态优化双层结构二次规划 (QP)线性规划 (LP)
Keywords:
model predictive control steady-state optimization two-layer structure quadratic programming linear programming
分类号:
TP273
DOI:
10.13889/j.issn.2096-5427.2020.01.500
文献标志码:
A
摘要:
为解决双层结构预测控制在工程应用中存在的通用化需求及参数配置问题,针对稳态优化层研究两阶段求解策略的标准化过程,形成一系列线性规划(LP)和二次规划(QP)问题;提出目标函数含绝对值及数值截断误差问题的解决策略;针对所形成的 LP 及 QP 问题,从几何关系及代数关系两方面分析了解其特性,并分析了模型失配对 LP 及 QP 解的影响。仿真验证结果表明,随着决策变量权重系数变化,QP 比 LP 的解具有更好的连续性, QP 的权重系数能更精确调节决策变量的偏向性;可行域边界的变化导致 LP 的解一定发生变化,而一直在约束空间内部的 QP 解则不随时间变化。
Abstract:
In order to solve the problems of generalized demand and parameter configuration in the engineering application of two-layer predictive control, a series of linear programming (LP) or quadratic programming (QP) problems are formed by studying the standardization process of the two-stage solution strategy in the steady-state optimization layer. It proposed a solution strategy of the objective function including absolute value and numerical truncation error, and analyzed the characteristics of solutions from the geometric and algebraic relations aiming at the problems of LP and QP. Simulation results prove that QP had better continuity than LP when the weight coefficient of decision variables are changed, and the weight coefficient of QP can more accurately adjust the bias of decision variables. The change of feasible region boundary results in the solution change of LP while the solution of QP which has been in the constraint space does not change with time.

参考文献/References:

[1] 席裕庚 , 李德伟 , 林姝 . 模型预测控制——现状与挑战 [J]. 自动化学报 , 2013(3): 222-236.
[2] XIONG M, GAO F, LIU K, et al. Optimal Real-Time Scheduling for Hybrid Energy Storage Systems and Wind Farms Based on Model Predictive Control[J]. Energies, 2015, 8: 8020-8051.
[3] AMRIT R, RAWLINGS J B, BIEGLER L T. Optimizing process economics online using model predictive control[J]. Computers & Chemical Engineering, 2013, 58: 334-343.
[4] 邹涛 , 潘昊 , 丁宝苍 , 等 . 双层结构预测控制研究进展 [J]. 控制理论与应用 , 2014(10): 1327-1337.
[5] LI L J, QIN S J. Drill-down diagnosis of deficient models in MPC[J]. IFAC-PapersOnLine, 2015, 48(8): 759-764.
[6] QIN S J, BADGWELL T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003,11(7):733- 764.
[7] ALVAREZ L A, ODLOAK D. Reduction of the QP-MPC cascade structure to a single layer MPC[J]. Journal of Process Control, 2014, 24(10): 1627-1638.
[8] MUSKE K R. Steady-state target optimization in linear model predictive control[C]//Proceedings of the American Control Conference (ACC). Anchorage, USA: ACC, 2002: 3597-3601.
[9] 谢亚军 , 丁宝苍 , 陈桥 . 状态空间模型的双层结构预测控制算法 [J]. 控制理论与应用 , 2017(1): 69-76.
[10] MARCHETTI A G, FERRAMOSCA A, GONZALEZ A H. Steady state target optimization designs for integrating real-time optimization and model predictive control[J]. Journal of Process Control, 2014, 24(1): 129-145.
 [11] RAO C V, RAWLINGS J B. Steady states and constraints in model predictive control[J]. AIChE Journal, 1999, 45(6): 1266-1278.
[12] KASSMANN D E, BADGWELL T A, HAWKINS R B. Robust steady-state target calculation for model predictive control[J]. AIChE Journal, 2000, 46(5): 1007-1024.
 [13] 戴彧虹 , 刘新为 . 线性与非线性规划算法与理论 [J]. 运筹学学报 , 2014(1):69-92.
 [14] NIKANDROV A, SWARTZ C L E. Sensitivity analysis of LP-MPC cascade control systems[J]. Journal of Process Control, 2009, 19(1): 16-24.
[15] 潘红光 , 高海南 , 孙耀 , 等 . 基于多优先级稳态优化的双层结构预测控制算法及软件实现 [J]. 自动化学报 , 2014(3): 405-414.
[16] 席裕庚 , 李慷 . 工业过程有约束多目标多自由度优化控制的可行性分析 [J]. 控制理论与应用 , 1995(5): 590-596.
 [17] 邹涛 , 李海强 , 丁宝苍 , 等 . 多变量预测控制系统稳态解的相容性与唯一性分析 [J]. 自动化学报 , 2013(5): 519-529.
[18] YING C M, JOSEPH B. Performance and stability analysis of LP MPC and QP-MPC cascade control systems[J]. AIChE Journal, 1999, 45(7): 1521-1534.
 [19] VICHIK S, BORRELLI F. Solving linear and quadratic programs with an analog circuit[J]. Computers & Chemical Engineering, 2014, 70(SI): 160-171.
[20] MITTELMANN H D. Benchmarking interior point LP/QP solvers[J]. Optimization Methods & Software, 1999, 11(1-4): 655-670.
[21] 石岿然 , 王成 . 目标函数含绝对值的一类分式规划问题 [J]. 南京工业大学学报(自然科学版), 2003, 25(4): 37-40.

相似文献/References:

[1]袁希文,冯江华,胡云卿,等.智轨电车自动循迹感知与控制系统[J].控制与信息技术,2020,(01):19.[doi:10.13889/j.issn.2096-5427.2020.01.003]
 YUAN Xiwen,FENG Jianghua,HU Yunqing,et al.Perception and Control Module of the Automatic Tracking System forAutonomous-rail Rapid Tram[J].High Power Converter Technology,2020,(02):19.[doi:10.13889/j.issn.2096-5427.2020.01.003]
[2]严永俊,王金湘,胡云卿,等.智轨电车横向运动预测控制研究[J].控制与信息技术,2020,(02):25.[doi:10.13889/j.issn.2096-5427.2020.02.005]
 YAN Yongjun,WANG Jinxiang,HU Yunqing,et al.Research on Lateral Motion Prediction and Control of Autonomous-rail Rapid Tram[J].High Power Converter Technology,2020,(02):25.[doi:10.13889/j.issn.2096-5427.2020.02.005]
[3]王洪瑞,等. 双层结构模型预测控制(MPC)稳态优化层QP 与LP 求解模态分析[J].控制与信息技术,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.100]
 WANG Hongrui,,et al. Modal Analysis of QP and LP Solution in Steady-state Optimization Layer of the Two-layer Structure MPC[J].High Power Converter Technology,2020,(02):1.[doi:10.13889/j.issn.2096-5427.2020.01.100]

备注/Memo

备注/Memo:
收稿日期:2019-11-28
作者简介:王洪瑞(1992—),女,博士研究生,从事先进过程控制控制理论与应用研究。
基金项目:国家重点研发计划(2018YFC0604403);国家自然科学基金项目 (61773366);辽宁省博士启动基金(20180540066);辽宁省自然科学基金资助计划项目(2019-KF-03-07
更新日期/Last Update: 2020-05-08