[1]胡云卿,冯江华,龙 腾,等.智轨电车多源环境感知系统[J].控制与信息技术,2020,(01):13.[doi:10.13889/j.issn.2096-5427.2020.01.002]
 HU Yunqing,FENG Jianghua,LONG Teng,et al.Multi-source Environment Perception System for Autonomous-rail Rapid Tram[J].High Power Converter Technology,2020,(01):13.[doi:10.13889/j.issn.2096-5427.2020.01.002]
点击复制

智轨电车多源环境感知系统()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2020年01期
页码:
13
栏目:
“智能轨道快运系统”专刊
出版日期:
2020-02-05

文章信息/Info

Title:
Multi-source Environment Perception System for Autonomous-rail Rapid Tram
文章编号:
2096-5427(2020)01-0013-06
作者:
胡云卿冯江华龙 腾潘文波袁希文林 军黄瑞鹏侯志超
(中车株洲电力机车研究所有限公司,湖南株洲 412001)
Author(s):
HU Yunqing FENG Jianghua LONG Teng PAN Wenbo YUAN Xiwen LIN Jun HUANG Ruipeng HOU Zhichao
( CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
激光雷达毫米波雷达全景图像障碍物检测点云匹配智轨电车
Keywords:
LiDAR millimeter wave radar panoramic image obstacle detection point cloud matching autonomous-rail rapid tram
分类号:
U121;T24
DOI:
10.13889/j.issn.2096-5427.2020.01.002
文献标志码:
A
摘要:
智轨电车的多源环境感知系统是车载平台与运行环境的交互纽带,其包括基于激光雷达的障碍物感知子系统、基于毫米波雷达的前侧向障碍物感知子系统以及基于多摄像头的360度环视子系统。基于激光雷达的障碍物感知子系统采用地面分割算法、点云聚类算法和数据关联算法,实现了对运行前方障碍物的检测和跟踪;基于毫米波雷达的前侧向障碍物感知子系统采用目标检测算法和跟踪算法,实现侧向以及前向障碍物探测;基于分布式鱼眼摄像头的360度环视子系统运用图像拼接算法,实现智轨电车周围障碍物感知和预警。实车试验结果表明,该环境感知系统可有效地提高智轨电车的运行安全系数,为车辆智能驾驶提供了全面的环境信息。
Abstract:
The multi-source environment perception system of the autonomous-rail rapid tram is an interactive link between the vehicle platform and the operating environment, which includes the obstacle perception subsystem based on LiDAR, the front-side obstacle perception subsystem based on millimeter wave radar and the 360-degree detection subsystem based on multi-camera. The ground segmentation algorithm, point cloud clustering algorithm and data association algorithm are used to detect and track the obstacles in front of the autonomous-rail rapid tram in the obstacle perception subsystem based on the LiDAR. The target detection algorithm and tracking algorithm are used to sense the side and forward obstacles of the autonomous-rail rapid tram in the obstacle perception subsystem based on the millimeter wave radar. The image mosaic algorithm is used for perception and early warning of obstacles around the autonomous-rail rapid tram in the 360 degree detection subsystem based on distributed fish eye camera. The results of the autonomous-rail rapid tram test show that the environment perception system proposed in this paper can effectively improve the operation safety factor of the autonomous-rail rapid tram and provide comprehensive environmental information for intelligent driving of vehicles.

参考文献/References:

[1] 钟良, 支晓栋, 刘鹏飞,等. Leica机载激光雷达应用研究[J]. 测绘通报, 2009(6):72-73.

[2] 赵一鸣, 李艳华, 商雅楠,等. 激光雷达的应用及发展趋势[J]. 遥测遥控, 2014, 35(5):4-22.
[3] LEE B L, LIN C F. Wide-range tunable semiconductor lasers using asymmetric dual quantum wells[J]. IEEE Photonics Technology Letters, 1998,10(3):322-324.
[4] LIU J, SUN Q, FAN Z, et al. TOF Lidar Development in Autonomous Vehicle[C]//2018 IEEE 3rd Optoelectronics Global Conference (OGC). Shenzhen, 2018: 185-190.
[5] 刘健. 基于三维激光雷达的无人驾驶车辆环境建模关键技术研究[D]. 合肥:中国科学技术大学, 2016.
[6] 陈益萍. 激光多普勒测速技术原理及其应用[J]. 电子世界, 2013(7):35-37.
[7] HUANG R, LIANG H, CHEN J, et al. An intent inference based dynamic obstacle avoidance method for intelligent vehicle in structured environment[C]// 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). Zhuhai, 2015: 1465-1470.
[8] PENG Y, QU D, ZHONG Y, et al. The obstacle detection and obstacle avoidance algorithm based on 2-D lidar[C]//2015 IEEE International Conference on Information and Automation. Lijiang, 2015:1648-1653.
[9] 黄晶,李勇,胡林.基于数据关联和改进统计模型的激光雷达目标跟踪研究[J].汽车工程,2018,40(3):356-362.
[10] YANG H, FAN X, SHI P, et al. Nonlinear Control for Tracking and Obstacle Avoidance of a Wheeled Mobile Robot With Nonholonomic Constraint[J].IEEE Transactions on Control Systems Technology, 2016,24(2):741-746.
[11] HUANG R, LIANG H, ZHAO P, et al. Intent-estimation-and motion-model-based collision avoidance method for autonomous vehicles in urban environments[J]. Applied Sciences (Switzerland), 2017,7(5):457.
[12] ZHANG L, SUN Y, MENG D, et al. Anomaly Detection for Hyperspectral Imagery Based on Incremental Support Vector Data Description[C]// International Conference on Multimedia Technology. Ningbo, 2010.
[13] GAGEIK N, BENZ P, MONTENEGRO S. Obstacle Detection and Collision Avoidance for a UAV With Complementary Low-Cost Sensors[J]. IEEE Access, 2015, 3:599-609.
[14] 李奕彤. 智能助行机器人的实时避障与共享控制研究[D]. 武汉:华中科技大学,2016.
[15] 迟瑞娟,赵木祯,王建强,等.一种基于折反射相机的客车全景环视系统[J]. 哈尔滨工程大学学报,2013,34(2):190-196.
[16] 李晓亮,王宇宁,安兆杰.全景环视泊车辅助系统在商用车上的应用[J].武汉理工大学学报(信息与管理工程版),2015,37(4):412-416.
[17] 龙腾蛟,袁希文,李晓光,等.多编组铰接车辆周界图像动态拼接方法研究[J].控制与信息技术,2018(6):104-108.

备注/Memo

备注/Memo:
收稿日期:2019-12-10
作者简介:胡云卿(1984—),男,博士,高级工程师,主要从事轨道交通领域智能控制技术研究。
基金项目:国家重点研发计划(2018YFB1201600)
更新日期/Last Update: 2020-03-26