[1]王洪瑞,等. 双层结构模型预测控制(MPC)稳态优化层QP 与LP 求解模态分析[J].控制与信息技术,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.100]
 WANG Hongrui,,et al. Modal Analysis of QP and LP Solution in Steady-state Optimization Layer of the Two-layer Structure MPC[J].High Power Converter Technology,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.100]
点击复制

 双层结构模型预测控制(MPC)稳态优化层QP 与LP 求解模态分析()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2020年01期
页码:
1
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
 Modal Analysis of QP and LP Solution in Steady-state Optimization Layer of the Two-layer Structure MPC
作者:
 王洪瑞1 2 3 4张 鑫1 2 3刘博文1 2 3 4蔺 娜5邹 涛6
 (1. 中国科学院 网络化控制系统重点实验室,辽宁 沈阳 110016;2. 中国科学院 沈阳自动化研究所,辽宁 沈阳 110016;
3. 中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110169;4. 中国科学院大学,北京 100049;
5. 国家科技风险开发事业中心,北京 100038;6. 广州大学,广东 广州 510006)
Author(s):
 WANG Hongrui 1 2 3 4 ZHANG Xin 1 2 3 LIU Bowen 1 2 3 4 LIN Na5 ZOU Tao6
关键词:
 模型预测控制稳态优化双层结构二次规划(QP)线性规划(LP)
Keywords:
 model predictive control steady-state optimization two-layer structure quadratic programming linear programming
分类号:
TP273
DOI:
10.13889/j.issn.2096-5427.2020.01.100
文献标志码:
A
摘要:
 为解决双层结构预测控制在工程应用中存在的通用化需求及参数配置问题,针对稳态优化层研究两阶段求解策略的标准化过程,形成一系列线性规划(LP)和二次规划(QP)问题;提出目标函数含绝对值及数值截断误差问题的解决策略;针对所形成的LP 及QP 问题,从几何关系及代数关系两方面分析了解的特性,并分析了模型失配对LP 及QP 解的影响。仿真验证结果表明:随着决策变量权重系数变化,QP 比LP 的解具有更好的连续性,QP 的权重系数能更精确调节决策变量的偏向性;可行域边界的变化导致LP 的解一定发生变化,而一直在约束空间内部的QP 解则不随时间变化。
Abstract:
 In order to solve the problems of generalized demand and parameter configuration in the engineering application of two-layer predictive control, a series of linear programming (LP) or quadratic programming (QP) problems are formed by studying the standardization process of two-stage solution strategy in the steady-state optimization layer. It proposed the solution strategy of the objective function including absolute value and numerical truncation error, and analyzed the characteristics of solutions from the geometric and algebraic relations aiming at the problems of LP and QP. The simulation results prove that QP had better continuity than LP when the weight coefficient of decision variables changed, and QP’s weight coefficient can more accurately adjust the bias of decision variables.The change of the boundary of the feasible region results in the change of the solution of LP while the solution of QP which has been in the constraint space does not change with time.

参考文献/References:

 [1] 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013(3):222-236.
[2] XIONG M, GAO F, LIU K, et al. Optimal Real-Time Scheduling for Hybrid Energy Storage Systems and Wind Farms Based on Model Predictive Control[J]. Energies, 2015,8:8020-8051.
[3] AMRIT R, RAWLINGS J B, BIEGLER L T. Optimizing process economics online using model predictive control[J]. Computers & Chemical Engineering, 2013,58:334-343.
[4] 邹涛, 潘昊, 丁宝苍, 等. 双层结构预测控制研究进展[J]. 控制理论与应用, 2014(10):1327-1337.
[5] LI L J, QIN S J. Drill-down diagnosis of deficient models in MPC[J].IFAC-PapersOnLine, 2015,48(8):759-764.
[6] QIN S J, BADGWELL T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003,11(7):733-764.
[7] ALVAREZ L A, ODLOAK D. Reduction of the QP-MPC cascade structure to a single layer MPC[J]. Journal of Process Control,2014,24(10):1627-1638.
[8] MUSKE K R. Steady-state target optimization in linear model predictive control[C]//Proceedings of the American Control Conference (ACC). Anchorage, USA: ACC, 2002:3597-3601.
[9] 谢亚军, 丁宝苍, 陈桥. 状态空间模型的双层结构预测控制算法[J]. 控制理论与应用, 2017(1):69-76.
[10] MARCHETTI A G, FERRAMOSCA A, GONZALEZ A H. Steadystate target optimization designs for integrating real-time optimization and model predictive control[J]. Journal of Process Control,2014,24(1):129-145.
[11] RAO C V, RAWLINGS J B. Steady states and constraints in model predictive control[J]. AIChE Journal, 1999, 45(6): 1266-1278.
[12] KASSMANN D E, BADGWELL T A, HAWKINS R B. Robust steady-state target calculation for model predictive control[J]. AIChE Journal, 2000, 46(5): 1007-1024.
[13] 戴彧虹, 刘新为. 线性与非线性规划算法与理论[J]. 运筹学学报,2014(1):69-92.
[14] NIKANDROV A, SWARTZ C L E. Sensitivity analysis of LPMPC cascade control systems[J]. Journal of Process Control,2009,19(1):16-24.
[15] 潘红光, 高海南, 孙耀, 等. 基于多优先级稳态优化的双层结构预测控制算法及软件实现[J]. 自动化学报, 2014(3):405-414.
[16] 席裕庚, 李慷. 工业过程有约束多目标多自由度优化控制的可行性分析[J]. 控制理论与应用, 1995(5):590-596.
[17] 邹涛, 李海强, 丁宝苍, 等. 多变量预测控制系统稳态解的相容性与唯一性分析[J]. 自动化学报, 2013(5):519-529.
[18] YING C M, JOSEPH B. Performance and stability analysis of LPMPC and QP-MPC cascade control systems[J]. AIChE Journal,1999,45(7):1521-1534.
[19] VICHIK S, BORRELLI F. Solving linear and quadratic programs with an analog circuit[J]. Computers & Chemical Engineering,2014,70(SI):160-171.
[20] MITTELMANN H D. Benchmarking interior point LP/QP solvers[J].Optimization Methods & Software, 1999,11(1-4):655-670.
[21] 石岿然, 王成. 目标函数含绝对值的一类分式规划问题[J]. 南京工业大学学报(自然科学版), 2003, 25(4):37-40.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(01):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术,2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(01):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术,2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(01):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术,2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术,2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(01):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(01):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术,2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(01):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术,2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(01):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]

备注/Memo

备注/Memo:
 收稿日期:2019-11-28
作者简介:王洪瑞(1992—),女,博士研究生,从事先进过程控制控制理论与应用研究。
基金项目:国家重点研发计划(2018YFC0604403);国家自然科学
基金项目(61773366);辽宁省博士启动基金(20180540066);辽宁
省自然科学基金资助计划项目(2019-KF-03-07)
更新日期/Last Update: 2020-01-20