[1]黄玉莎,陈玉珊,秦琳琳,等. 基于CARMA 模型的动力电池荷电状态估计[J].控制与信息技术,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.400]
 HUANG Yusha,CHEN Yushan,QIN Linlin,et al. Charge State Estimation of Power Batteries Based on CARMA Model[J].High Power Converter Technology,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.400]
点击复制

 基于CARMA 模型的动力电池荷电状态估计()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2020年01期
页码:
1
栏目:
出版日期:
2020-02-05

文章信息/Info

Title:
 Charge State Estimation of Power Batteries Based on CARMA Model
作者:
 黄玉莎陈玉珊秦琳琳石 春吴 刚
 (中国科学技术大学 信息科学技术学院,安徽 合肥 230026)
Author(s):
 HUANG Yusha CHEN Yushan QIN Linlin SHI Chun WU Gang
 ( School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China )
关键词:
 荷电状态受控自回归滑动平均模型动力电池
Keywords:
 SOC(state of charge) CARMA(controlled auto-regressive moving average) power battery
分类号:
TM911;U46
DOI:
10.13889/j.issn.2096-5427.2020.01.400
文献标志码:
A
摘要:
 为完善电动汽车电池管理系统的主要功能,实现对电池准确建模及荷电状态(state of charge,SOC)的准确估计。文章基于二阶RC 等效电路建立了一种受控自回归滑动平均模型(controlled auto-regressive moving average,CARMA),推导得到电池开路电压(open circuit voltage,OCV) 的最优估计,并结合分段建立的电池OCVSOC模型实现电池SOC 估计。本文提出的方法实现了电池模型参数在线实时辨识以及SOC 实时估计,解决了因初值设定不合理而影响SOC 估计准确度的问题。仿真结果表明:在美国联邦城市运行工况下,SOC 估计误差的绝对值不超过2.39%,实现了较为准确的SOC 估计。
Abstract:
 In order to improve the main functions of the electric vehicle battery management system, this paper aims to realize accurate battery modeling and state of charge(SOC) estimation. In this paper, based on the second-order RC equivalent circuit model, the controlled auto-regressive moving average (CARMA) of the battery is established. The optimal estimation of the open circuit voltage (OCV) is derived from the CARMA model ,and the battery OCV-SOC model is established in combination with the segmentation to achieve battery SOC estimation. The method proposed in this paper realizes online real-time identification of battery model parameters and realtime SOC estimation, which solves the problem that the unreasonable initial value setting which affects the accuracy of SOC estimation. The simulation results show that under the operating conditions of the federal city in the United States, the absolute value of the SOC estimation error does not exceed 2.39%, and a more accurate SOC estimation is achieved.

参考文献/References:

 [1] HANNAN M A, LIPU M H, HUSSAIN A, et al. A review of lithiumion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J].Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
[2] CHEN C, XIONG R, YANG R, et al. State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter[J]. Journal of Cleaner Production, 2019,234:1153-1164.
[3] SULAIMAN N, HANNAN M A, MOHAMED A, et al. A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 802-814.
[4] LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of power sources, 2013, 226: 272-288.
[5] NG K S, MOO C-S, CHEN Y-P, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithiumion batteries[J]. Applied energy, 2009, 86(9): 1506-1511.
[6] XING Y J, HE W, PECHT M, et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113: 106-115.
[7] LEE S, KIM J, LEE J, et al. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge[J]. Journal of power sources, 2008, 185(2): 1367-1373.
[8] YUAN S F, WU H J, YIN C L. State of charge estimation using the extended Kalman filter for battery management systems based on the ARX battery model[J]. Energies, 2013, 6(1): 444-470.
[9] KANG L W , ZHAO X , MA J . A new neural network model for the state-of-charge estimation in the battery degradation process[J].Applied Energy, 2014, 121:20-27.
[10] ZHENG F D, XING Y J, JIANG J C, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithiumion batteries[J]. Applied energy, 2016, 183: 513-525.
[11] HE H W, ZHANG X W, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310-318.
[12] 沈之宇. 小氮肥氨合成装置先进控制与优化研究与应用[D]. 安徽:中国科学技术大学, 2006.
[13] 段云鹏. 纯电动物流车动力蓄电池系统荷电状态的建模与估计[D]. 安徽:中国科学技术大学, 2018.
[14] HUNT G. USABC electric vehicle battery test procedures manual[J]. Washington, DC, USA: United States Department of Energy, 1996.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(01):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术,2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(01):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术,2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(01):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术,2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术,2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(01):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(01):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术,2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(01):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术,2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(01):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
[11]杨杰君,文健峰,王 全,等. 基于在线极限连续学习机的LiFePO4动力电池SOC 估算[J].控制与信息技术,2019,(05):1.[doi:10.13889/j.issn.2096-5427.2019.05.100]
 YANG Jiejun,WEN Jianfeng,WANG Quan,et al. SOC Estimation of LiFePO4 Power Battery Based on OSELM[J].High Power Converter Technology,2019,(01):1.[doi:10.13889/j.issn.2096-5427.2019.05.100]

备注/Memo

备注/Memo:
 收稿日期:2019-11-22
作者简介:黄玉莎(1996—),女,在读硕士研究生,研究方向为电池建模与估计。
更新日期/Last Update: 2020-01-19