[1]代晓鹏,雷 飞,张天昊. 基于最优控制策略的逆变器散热结构优化[J].控制与信息技术,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.200]
 DAI Xiaopeng,LEI Fei,ZHANG Tianhao. Heat Dissipation Structure Optimization of Inverter Based on the Optimal Control Strategy[J].High Power Converter Technology,2020,(01):1.[doi:10.13889/j.issn.2096-5427.2020.01.200]
点击复制

 基于最优控制策略的逆变器散热结构优化()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2020年01期
页码:
1
栏目:
出版日期:
2020-02-29

文章信息/Info

Title:
 Heat Dissipation Structure Optimization of Inverter Based on the Optimal Control Strategy
作者:
 代晓鹏雷 飞张天昊
 (湖南大学 汽车车身先进设计制造国家重点实验室 机械与运载工程学院,湖南 长沙 410082)
Author(s):
 DAI XiaopengLEI Fei ZHANG Tianhao
 ( Mechanical and Vehicle Engineering,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082,China )
关键词:
 IGBT 模块最大转矩电流比热管风冷散热代理模型多岛遗传算法优化
Keywords:
 IGBT module MTPA(maximum torque per ampere) heat pipe air cooling surrogate model MIGA(multi-island genetic algorithm) optimization
分类号:
TN712;TM464
DOI:
10.13889/j.issn.2096-5427.2020.01.200
文献标志码:
A
摘要:
 为了提高电动汽车永磁同步电机逆变器IGBT 模块的可靠性,文章首先从热损耗和散热两方面对逆变器可靠性进行研究。通过对比分析永磁同步电机在同一工况下d 轴电枢电流为零(id=0)和最大转矩电流比(MTPA)两种控制方式下逆变器中IGBT 模块的损耗,发现采用MTPA 控制策略优于id=0 控制策略。接着基于MTPA 控制策略,设计了一种热管和风冷相结合的散热结构,相较原风冷散热结构,采用新型散热方式可使芯片最高工作温度降低8.49 ℃。最后采用最优拉丁超立方抽样构建响应面代理模型(RSM),并采用多岛遗传算法(MIGA) 对代理模型进行优化处理。经仿真验证,优化处理后的热管风冷散热结构使得芯片最高温度又降低了15.12 ℃,有效提升了IGBT 模块的热可靠性。
Abstract:
 In order to improve the reliability of the IGBT module of the permanent magnet synchronous motor,s inverter of electric vehicle, firstly,the article researches the reliability of the inverter from two aspects: heat loss and heat dissipation. Through the analysis of the loss comparison of IGBT module in the inverter under the same condition of d-axis armature current zero (id = 0) and maximum torque per ampere (MTPA), it is found that the MTPA control strategy is better than the id = 0 control strategy. Then,based on the MTPA control strategy, a heat pipe and air cooling combined cooling structure is designed . Compared with the original air cooling structure, the new cooling method can reduce the maximum working temperature of the chips by 8.49 ℃ . In this paper, the optimal Latin hypercube sampling is used to construct the response surface surrogate model (RSM), and the multi-island genetic algorithm (MIGA) is used to optimize the surrogate model. It is verified that the optimized heat pipe air-cooled heat dissipation structure reduces the maximum chip temperature by 15.12 ℃ , which effectively improves the thermal reliability of the IGBT module.

参考文献/References:

 [1] LU J Z, SHEN L M, HUANG Q J, et al. Investigation of a rectangular heat pipe radiator with parallel heat flow structure for cooling highpower IGBT modules[J]. International Journal of Thermal Sciences,2019,135: 83-93.
[2] SARKAR A, ISSAC B. Importance of thermal radiation from heat sink in cooling of three phase PWM inverter kept inside an evacuated chamber[J]. Engineering Science and Technology,an International Journal, 2017,20: 542-551.
[3] XIA G H, ZHUANG D W, DING G L. Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink[J]. International Journal of Refrigeration, 2019,99: 69-79.
[4] 张健. 电力电子器件及其装置的散热结构优化研究[D]. 深圳:哈尔滨工业大学, 2015.
[5] REN G F, TIAN F, YANG L. The research of thermal design for vehicle controller based on simulation[J]. Applied Thermal Engineering, 2013, 58: 420-429.
[6] 解小刚, 陈进. 采用 id=0 的永磁同步电机矢量控制系统MATLAB/Simulink 仿真[J]. 新型工业化,2016, 6(5): 47-54.
[7] 曹晖, 罗峰, 周盼, 等. 永磁同步电机最大转矩电流比控制的仿真研究[J]. 微电机, 2015,48(6): 55-59.
[8] Infineon Technologies. IGBT-Module FS800R07A2E3[EB/OL].(2013-01-01) [2019-07-08]. http: ∥ www.infineon.com.
[9] 焦明亮, 李云, 吴春冬, 等. 一种电动汽车逆变器 IGBT 功率损耗和结温的近似计算方法[J]. 大功率变流技术, 2015 (5): 58-63.
[10] 焦学军, 盘明旺, 贺荣. 某系统散热器用热管传热性能试验研究[J]. 热能动力工程,2016, 31(10): 20-24.
[11] 郭俊龙, 马立元, 李永军, 等. 基于Kriging 代理模型的结构损伤识别新方法[J]. 中国机械工程, 2016, 27(9): 1203-1207.
[12] SHI X J, LI X, MU Y J, et al. Geometry parameters optimization for a microchannel heat sink with secondary flow channel[J]. International Communications in Heat and Mass Transfer, 2019,104: 89-100.
[13] 李建华, 毛文贵, 傅彩明. 基于径向基函数的吊装定子铁心材料参数反求[J]. 大电机技术,2014 (1): 28-30.
[14] 韩露男, 于兰峰, 潘益明. 基于响应面法的龙门混凝土浇灌机优化设计[J]. 现代制造工程, 2019(5): 47-51.
[15] CHEN S Q, PENG X B, BAO N S, et al. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module[J]. Applied Thermal Engineering, 2019, 156: 324-339.

相似文献/References:

[1]陈明锋,雷万钧,付翀丽,等.T 型三电平结构SVG 的损耗研究[J].控制与信息技术,2015,(04):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
 CHEN Mingfeng,LEI Wanjun,FU Chongli,et al.Research on the Loss of Three-level T-type Inverter in SVG[J].High Power Converter Technology,2015,(01):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
[2]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(01):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[3]王彦刚,戴小平,吴义伯,等.IGBT 模块功率损耗的产生机理、计算及模拟[J].控制与信息技术,2015,(02):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
 WANG Yangang,DAI Xiaoping,WU Yibo,et al.The Mechanism, Calculation and Simulation of Power Loss for IGBT Modules[J].High Power Converter Technology,2015,(01):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
[4]方 杰,彭勇殿,窦泽春,等.高压IGBT 模块中AlN 衬板的局部放电特性研究[J].控制与信息技术,2015,(05):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
 FANG Jie,PENG Yongdian,DOU Zechun,et al.Research on Partial Discharge Behavior of AlN Substrate in High Voltage IGBT Module[J].High Power Converter Technology,2015,(01):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
[5]张 明. 现代电力电子集成技术综述[J].控制与信息技术,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[6]李世平,奉琴,陈彦,等.IGBT模块中续流二极管关断过程失效机理分析[J].控制与信息技术,2014,(05):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
 LI Shiping,FENG Qin,CHEN Yan,et al.Analysis of Turn-off Failure Mechanism for the Freewheeling Diode in IGBT Module[J].High Power Converter Technology,2014,(01):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
[7]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术,2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(01):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[8]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术,2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(01):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[9]李 寒,曾 雄,徐凝华,等.超声扫描在IGBT 模块质量分析中的应用[J].控制与信息技术,2016,(02):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
 LI Han,ZENG Xiong,XU Ninghua,et al.Application of Acoustic Scanning Technology in Quality Analysis of IGBT Module[J].High Power Converter Technology,2016,(01):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
[10]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术,2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[11]王彦刚,等. 电动汽车功率模块平面封装技术[J].控制与信息技术,2017,(05):36.[doi:10.13889/j.issn.2095-3631.2017.05.005]
 WANG Yangang,LIU Xuyu,et al. Planar Packaging Technology of Power Semiconductor Module for Electric Vehicle[J].High Power Converter Technology,2017,(01):36.[doi:10.13889/j.issn.2095-3631.2017.05.005]

备注/Memo

备注/Memo:
 收稿日期:2019-08-14
作者简介:代晓鹏(1993—),男,在读硕士研究生,研究方向为新能源汽车控制器热设计。
基金项目:国家重点研发计划(2018YFB0104501)
更新日期/Last Update: 2020-01-19