[1]刘继国.基于遗传算法的公交排班系统研究[J].控制与信息技术,2019,(06):13-17.[doi:10.13889/j.issn.2096-5427.2019.06.003]
 LIU Jiguo.Research on the Intelligent Bus Scheduling System Based on Genetic Algorithm[J].High Power Converter Technology,2019,(06):13-17.[doi:10.13889/j.issn.2096-5427.2019.06.003]
点击复制

基于遗传算法的公交排班系统研究()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年06期
页码:
13-17
栏目:
控制理论与应用
出版日期:
2019-12-05

文章信息/Info

Title:
Research on the Intelligent Bus Scheduling System Based on Genetic Algorithm
文章编号:
2096-5427(2019)06-0013-05
作者:
刘继国
(北京航空航天大学软件学院, 北京 100191)
Author(s):
LIU Jiguo
( School of Software, Beihang University, Beijing 100191, China )
关键词:
智能排班遗传算法公交线路模型发车频率调度
Keywords:
intelligent schedule genetic algorithm bus line model departure frequency dispatch
分类号:
TP18
DOI:
10.13889/j.issn.2096-5427.2019.06.003
文献标志码:
A
摘要:
针对公交车的调度优化问题,文章通过对公交线路模型以及不同等级的公交线路层次特征进行分析,提出了一种基于遗传算法的公交排班模型,并建立了目标函数和约束条件。文中分别对公交线路模型和公交排班问题模型进行了Matlab仿真实验,并模拟了公交线路上人员数量的变化。针对公交排班的特点,对遗传算法的各个算子进行了专门化处理并进行了大量的试算。仿真实验结果表明,遗传算法对解决公交车辆排班问题是有效的,大大地提高了公交车辆的运营效率。
Abstract:
Aiming at the problem of bus scheduling optimization, it analyzed the bus line model and the hierarchical characteristics of different levels of bus lines, proposed a bus scheduling model based on genetic algorithm and established the objective function and constraints. In this paper, Matlab simulation experiments were performed on the bus line model and the bus scheduling problem model, and the change of the number of people on the bus line was simulated. Aiming at the characteristics of bus scheduling, each operator of genetic algorithm was specially processed and a large number of trial calculations were performed. The experimental results show that the genetic algorithm is effective for solving the problem of bus scheduling, which greatly improves the operational efficiency of buses.

参考文献/References:

[1] 钱进. 交通运输部印发《城市公共交通“十三五”发展纲要》[J]. 工程建设标准化, 2016(8):21.

[2] 北京公交控股(集团)有限公司. 北京公交集团发布《2016年社会责任报告》[J]. 人民公交,2016(8):6-7.
[3] 陈茜, 牛学勤, 陈学武, 等. 公交线路发车频率优化模型[J]. 公路交通科技, 2004, 21(2):103-108.
[4] YU H, MA H, SHANG C, et al. A minimum-cost model for bus timetabling problem[J]. Soft Computing, 2018(21):6995-7003.
[5] ZARANDI M H F, ASL A A S, SOTUDIAN S, et al. A state of the art review of intelligent scheduling[J/OL]. Artificial Intelligence Review, 2018(6):1-93[2018-11-19].https://link.springer.com/article/10.1007/s10462-018-9667-6.
[6] ZHANG F, CAO X, YANG D. Intelligent Scheduling of Public Traffic Vehicles Based on a Hybrid Genetic Algorithm[J]. Tsinghua Science and Technology, 2008, 13(5):625-631.
[7] CHEN R, FANG L. Research on Application of Intelligence Schedule of City Pubic Traffic Vehicles Based on Genetic Algorithm[J]. Advanced Materials Research, 2013, 706-708(2):1902-1906.
[8] JAHANGIRIAN M, CONROY G V. Intelligent dynamic scheduling system: the application of genetic algorithms[J]. Integrated Manufacturing Systems, 2000, 11(4):247-257.
[9] 张彬. 常规公交线路优化与资源配置评价指标体系研究[D]. 南京:东南大学, 2006.
[10] 潘云龙. 基于遗传算法的地铁智能排班系统设计与实现[D]. 广州:华南理工大学, 2013.
[11] 袁俊杰, 罗汝斌, 廖俊, 等. 3种神经网络模型在平流层风场预测中的应用[J]. 控制与信息技术, 2019(5):12-16.
[12] 莫鸿强. 遗传算法搜索能力和编码方式研究[D]. 广州:华南理工大学, 2001.
[13] 耿晨歌, 赵睿昕. 基于遗传算法的地铁列车自动驾驶控制算法研究[J]. 武汉理工大学学报:交通科学与工程版, 2013, 37(6):1193-1197.
[14] 陈建安, 郭大伟. 遗传算法理论研究综述[J]. 西安电子科技大学学报, 1998(3):363-368.
[15] WANG X, REN Q. Application of optimized genetic algorithm based on big data in bus dynamic scheduling[J]. Cluster Computing, 2018(9):1-8.
[16] WANG G, WU Q . Research on Repeat-route Bus Departure Interval Synchro Optimization[J]. Journal of Transportation Engineering and Information, 2017(2): 35-40.
[17] FEIZHOU Z. Research on Intelligent Scheduling for Public Traffic Vehicles[J]. Communication and Transportation Systems Engineering and Information, 2001, 1(1):73-80.

相似文献/References:

[1]谢 磊,张洪波,周 祥,等.基于组合算法的运载火箭一子级动力垂直回收轨迹规划[J].控制与信息技术,2019,(04):79.[doi:10.13889/j.issn.2096-5427.2019.04.013]
 XIE Lei,ZHANG Hongbo,ZHOU Xiang,et al.Trajectory Planning of First Stage Rocket Powered Vertical Recovery Using a Hybrid Optimization Method[J].High Power Converter Technology,2019,(06):79.[doi:10.13889/j.issn.2096-5427.2019.04.013]
[2]袁俊杰,罗汝斌,廖 俊,等.3 种神经网络模型在平流层风场预测中的应用[J].控制与信息技术,2019,(05):12.[doi:10.13889/j.issn.2096-5427.2019.05.003]
 YUAN Junjie,LUO Rubin,LIAO Jun,et al.Application of Three Neural Network Models in the Prediction ofStratospheric Wind Field[J].High Power Converter Technology,2019,(06):12.[doi:10.13889/j.issn.2096-5427.2019.05.003]

备注/Memo

备注/Memo:
收稿日期:2019-08-05
作者简介:刘继国(1994—),男,在读硕士研究生,主要研究方向为智能交通系统。
基金项目:国家科技计划课题(Z191100002519002);北京市优秀人才培养基金项目(2017000021063G008)
更新日期/Last Update: 2019-12-25