[1]陈耀琦,周 维,张维刚.基于动态规划的电动汽车最佳驾驶决策分析[J].控制与信息技术,2019,(06):1-7.[doi:10.13889/j.issn.2096-5427.2019.06.600]
 CHEN Yaoqi,ZHOU Wei,ZHANG Weigang.Analysis of the Best Driving Decision of Electric Vehicles Based onDynamic Programming[J].High Power Converter Technology,2019,(06):1-7.[doi:10.13889/j.issn.2096-5427.2019.06.600]
点击复制

基于动态规划的电动汽车最佳驾驶决策分析()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年06期
页码:
1-7
栏目:
控制理论与应用
出版日期:
2019-12-05

文章信息/Info

Title:
Analysis of the Best Driving Decision of Electric Vehicles Based onDynamic Programming
文章编号:
2096-5427(2019)06-0001-07
作者:
陈耀琦周 维张维刚
(湖南大学机械与运载工程学院,湖南 长沙 410082)
Author(s):
CHEN Yaoqi ZHOU Wei ZHANG Weigang
( College of Mechanical and Transportation Engineering, Hunan University, Changsha, Hunan 410082,China )
关键词:
电动汽车经济性驾驶轨迹优化动态规划
Keywords:
electric vehicle eco-driving trajectory optimization dynamic programming
分类号:
U469.72
DOI:
10.13889/j.issn.2096-5427.2019.06.600
文献标志码:
A
摘要:
电动汽车可以通过车联网获取更为丰富的前方道路和交通状况信息,从而帮助车载控制系统更加合理地规划行车轨迹,实现更加高效和环保的驾驶。文章对某电动汽车在前方道路信息完全已知情况下的最佳经济性驾驶策略及其影响因素进行研究,提出了以“时间最短”和“能耗最低”为双优化目标的车速规划问题数学模型,并利用基于位置域的动态规划算法进行求解。仿真分析了目标函数权重系数、滚动阻力系数空间分布、道路坡度空间分布和区域限速对最佳经济性驾驶策略的影响,结果表明:当以“时间最短”为目标时,最优驾驶策略不受上述因素影响,电机基本工作在其外特性曲线上;当以“能耗最低”为目标时,最佳的驾驶策略是根据路面负荷和路段限速情况动态调整油门踏板开度,以维持电机始终工作在其最高效率区附近。
Abstract:
The internet of vehicles enables electric vehicles to access more front-road and traffic information, helping the vehicle control system to more accurately plan the speed trajectory and improving the driving efficiency and ecology. In this paper, the optimal economic driving strategy and its influencing factors of an electric vehicle with completely known front road information were studied. The optimal speed control problem is constructed with the shortest time and the lowest energy consumption. And a location-based dynamic programming algorithm was adoped to solve the problem. The effects of objective function weighting factor, rolling resistance coefficient spatial distribution, road gradient spatial distribution and regional speed limit on the optimal economic driving strategy were analyzed. The results show that the optimal driving strategy is not affected by above mentioned factors when the shortest time is taken as the goal, and the motor basically works on its external characteristic curve; when the lowest energy consumption is taken as the goal, the optimal driving strategy is to dynamically adjust the throttle pedal opening according to the road load and the speed limit of the road section, so as to maintain the motor working near its maximum efficiency area all the time.

参考文献/References:

[1] LI L, YANG C, ZHANG Y H, et al. Correctional DP-based energy management strategy of plug-in hybrid electric bus for city-bus route[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 2792-2803.

[2] ASHER Z D, BAKER D A, BRADLEY T H. Prediction error applied to hybrid electric vehicle optimal fuel economy[J]. IEEE Transactions on Control Systems Technology, 2018, 26(6): 2121-2134.
[3] BORHAN H, VAHIDI A, PHILLIPS A M, et al. MPC-based energy management of a power-split hybrid electric vehicle[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3): 593-603.
[4] SCIARRETTA A, DE NUNZIO G, LUIS LEON O. Optimal eco-driving control: energy-efficient driving of road vehicles as an optimal control problem[J]. IEEE Control Systems, 2015, 35(5): 71-90.
[5] OJEDA L L, HAN J H, SCIARRETTA A,et al.A real-time eco-driving strategy for automated electric vehicles[C]//Proc. 2017 IEEE 56th Annu. Conf. Decision Control. Melbourne, Australia:IEEE, 2017: 2768-2774.
[6] SUN C, MOURA S J, HU X S,et al. Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1075-1086.
[7] HAN J H, SCIARRETTA A, OJEDA L L, et al. Safe- and eco-driving control for connected and automated electric vehicles using analytical state-constrained optimal solution[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(2): 163-172.
[8] ZENG X R, WANG J M. Optimizing the energy management strategy for plug-in hybrid electric vehicles with multiple frequent route[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 394-400.
[9] SALAZAR M, BALERNA C, ELBERT P, et al. Real-time control algorithms for a hybrid electric race car using a two-level model predictive control scheme[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10911-10922.
[10] MARTINEZ C M, HU X S, CAO D P, et al. Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4534-4549.

相似文献/References:

[1]吴春冬,李 云,焦明亮,等.纯电动汽车逆变器直流侧纹波分析与计算[J].控制与信息技术,2015,(03):47.[doi:10.13889/j.issn.2095-3631.2015.03.011]
 WU Chundong,LI Yun,JIAO Mingliang,et al.Analysis and Calculation of DC-link Ripple for the Inverter in Electric Vehicle[J].High Power Converter Technology,2015,(06):47.[doi:10.13889/j.issn.2095-3631.2015.03.011]
[2]余 军,马雅青,赵振龙,等.电动汽车用水冷散热器的设计及仿真[J].控制与信息技术,2015,(03):51.[doi:10.13889/j.issn.2095-3631.2015.03.012]
 YU Jun,MA Yaqing,ZHAO Zhenlong,et al.Design and Simulation of Water-cooled Radiator Used in Electric Vehicle[J].High Power Converter Technology,2015,(06):51.[doi:10.13889/j.issn.2095-3631.2015.03.012]
[3]李 云,朱世武,吴春冬,等.电动汽车电机控制器的发展[J].控制与信息技术,2015,(02):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
 LI Yun,ZHU Shiwu,WU Chundong,et al.Development of the Motor Control Unit for Electric Vehicle[J].High Power Converter Technology,2015,(06):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
[4]陈慧民.电动汽车永磁同步电机堵转损坏机理分析及预防措施[J].控制与信息技术,2015,(05):54.[doi:10.13889/j.issn.2095-3631.2015.05.011]
 CHEN Huimin.Damage Mechanism Analysis and Preventive Measures of the Stalled Permanent Magnet Synchronous Motor in Electric Vehicle[J].High Power Converter Technology,2015,(06):54.[doi:10.13889/j.issn.2095-3631.2015.05.011]
[5]焦明亮,李 云,吴春冬,等.一种电动汽车逆变器IGBT 功率损耗和结温的近似计算方法[J].控制与信息技术,2015,(05):58.[doi:10.13889/j.issn.2095-3631.2015.05.012]
 JIAO Mingliang,LI Yun,WU Chundong,et al.An Approximate Calculation Method of IGBT Power Losses and Junction Temperatures for Electric Vehicle Inverter[J].High Power Converter Technology,2015,(06):58.[doi:10.13889/j.issn.2095-3631.2015.05.012]
[6]丁惜瀛,王春强,张洪月,等.基于xPC 的电动汽车自适应巡航控制半实物仿真[J].控制与信息技术,2014,(06):27.[doi:10.13889/j.issn.2095-3631.2014.06.007]
 DING Xiying,WANG Chunqiang,ZHANG Hongyue,et al.Semi-physical Simulation of Adaptive Cruise Control for Electric Vehicle Based on xPC[J].High Power Converter Technology,2014,(06):27.[doi:10.13889/j.issn.2095-3631.2014.06.007]
[7]范祝霞,罗家运,支永健,等.电动汽车驱动系统用控制板EMC仿真分析及优化[J].控制与信息技术,2014,(04):36.[doi:10.13889/j.issn.2095-3631.2014.04.009]
 FAN Zhu-xia,LUO Jia-yun,ZHI Yong-jian,et al.Simulation and Optimization of Control Board Used in Electric Vehicle Drive System[J].High Power Converter Technology,2014,(06):36.[doi:10.13889/j.issn.2095-3631.2014.04.009]
[8]田奎森,刘春秀,王征宇,等.电动汽车驱动电机系统的环境适应性设计[J].控制与信息技术,2014,(02):27.[doi:10.13889/j.issn.2095-3631.2014.02.001]
 TIAN Kui-shen,LIU Chun-xiu,WANG Zheng-yu,et al.Environmental Adaptability Design of Drive Motor System for Electric Vehicle[J].High Power Converter Technology,2014,(06):27.[doi:10.13889/j.issn.2095-3631.2014.02.001]
[9]宋 超,谢勇波,文 多,等.基于 CCP 协议的插电式混合动力通用监控系统开发[J].控制与信息技术,2016,(02):57.[doi:10.13889/j.issn.2095-3631.2016.02.012]
 SONG Chao,XIE Yongbo,WEN Duo,et al.Development of the Plug-in Hybrid Monitoring System Based on CCP Protocol[J].High Power Converter Technology,2016,(06):57.[doi:10.13889/j.issn.2095-3631.2016.02.012]
[10]丁惜瀛,王晶晶,张泽宇,等.基于神经网络的4WD电动汽车AFS/DYC解耦控制研究[J].控制与信息技术,2013,(04):48.[doi:10.13889/j.issn.2095-3631.2013.04.005]
 DING Xi-ying,WANG Jing-jing,ZHANG Ze-yu,et al.Research on AFS/DYC Decoupling Control of 4WD EV Based on Neutral Network[J].High Power Converter Technology,2013,(06):48.[doi:10.13889/j.issn.2095-3631.2013.04.005]
[11]陈耀琦,周 维,张维刚. 基于动态规划的电动汽车最佳驾驶决策分析[J].控制与信息技术,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.06.600]
 CHEN Yaoqi,ZHOU Wei,ZHANG Weigang. Analysis of the Best Driving Decision of Electric Vehicles Based on Dynamic Programming[J].High Power Converter Technology,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.06.600]

备注/Memo

备注/Memo:
收稿日期:2019-09-23
作者简介:陈耀琦(1996—),男,硕士,主要研究方向为电动汽车能量管理策略。
基金项目:中央高校基本科研业务费(531118040087)资助;江西科技学院汽车服务工程及产业升级协同创新中心开放基金项目(19XTKFYB01)
更新日期/Last Update: 2019-12-25