[1]聂博文,刘志涛,曾维平,等.一种可折叠变形飞行器的过渡飞行控制策略设计与初步验证[J].控制与信息技术(原大功率变流技术),2019,(04):50-57.[doi:10.13889/j.issn.2096-5427.2019.04.009]
 NIE Bowen,LIU Zhitao,ZENG Weiping,et al.Design and Preliminary Validation of Conversion Flight Scheme for a Retractable Morphing Aircraft[J].High Power Converter Technology,2019,(04):50-57.[doi:10.13889/j.issn.2096-5427.2019.04.009]
点击复制

一种可折叠变形飞行器的过渡飞行控制策略设计与初步验证()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年04期
页码:
50-57
栏目:
“中国飞行力学学术年会”专刊
出版日期:
2019-08-05

文章信息/Info

Title:
Design and Preliminary Validation of Conversion Flight Scheme for a Retractable Morphing Aircraft
文章编号:
2096-5427(2019)04-0050-08
作者:
聂博文刘志涛曾维平梁 勇韩建飞
(中国空气动力研究与发展中心低速空气动力研究所,四川 绵阳 621000)
Author(s):
NIE BowenLIU ZhitaoZENG WeipingLIANG YongHAN Jianfei
( Low Speed Aeronautics Institution of China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China )
关键词:
无人机姿态控制折叠变形过渡飞行
Keywords:
UAV attitude control retractable morphing conversion flight
分类号:
V249.1
DOI:
10.13889/j.issn.2096-5427.2019.04.009
文献标志码:
A
摘要:
文章简要介绍了一种可折叠变形的垂直起降无人机的概念及其飞行操控原理,提出了一种基于过渡飞行走廊的过渡飞行控制策略。在构建折叠变形原理样机之前,针对过渡飞行走廊的起始段和末尾段,以典型的四旋翼、固定翼飞行器平台为研究对象开展了控制策略设计和仿真分析,分别研究了垂直起降和高速巡航飞行模态与过渡飞行模态之间的状态衔接问题。最后,通过地面和风洞飞行试验验证了该过渡飞行控制策略的可行性和有效性。
Abstract:
It briefly introduced the overview and flight mechanics of a retractable morphing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV), and presented a flight control scheme for conversion corridor. Towards the beginning and ending section of conversion corridor, a quad-rotor and a fixed-wing aircraft was selected as the typical research benchmark for flight control scheme design and simulation, which aimed to research on the transformation between VTOL, high speed cruise mode and conversion flight mode before a prototype retractable aircraft would be developed. At last, the feasibility and effectiveness of the conversion flight scheme were tested and preliminarily validated via ground and flight tests in the wind tunnel.

参考文献/References:

[1] SAEED A S , CAI G , YOUNES B , et al. A Review on the Platform Design, Dynamic Modeling and Control of Hybrid UAVs[C]// International Conference on Unmanned Aircraft Systems. Denver, USA:IEEE, 2015:806-815.
[2] ROTHHAAR P M , MURPHY P C , BACON B J , et al. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Atlanta, GA: AIAA, 2014:1-14.
 [3] HERNANDEZ-GARCIA R G, RODRIGUEZ-CORTES H. Transition flight control of a cyclic tilt rotor UAV based on the Gain-Scheduling strategy[C]// Proceedings of the 2015 international conference on unmanned aircraft systems. Denver, USA: IEEE , 2015.
[4] MURAOKA K, OKADA N, KUBO D, et al. Transition flight of quad tilt wing VTOL UAV[C]// Proceedings of the 28th congress of the international council of the aeronautical sciences. Brisbane, Australia. Bonn, Germany: ICAS, 2012.
 [5] DICKESON J J, MILES D, CIFDALOZ O, et al. Robust LPV H∞ Gain-Scheduled Hover-to-Cruise Conversion for a Tilt-Wing Rotorcraft in the Presence of CG Variations[C]//American Control Conference. New York City, USA: IEEE, 2007: 5266-5271.
[6] SONG Y G,WANG H J. Design of Flight Control System for a Small Unmanned Tilt Rotor Aircraft[J]. Chinese Journal of Aeronautics, 2009, 22(3):250-256.
[7] 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 26-34.
[8] YU L, ZHANG D, ZHANG J. Transition flight modeling and control of a novel tilt tri-rotor UAV[C]// IEEE International Conference on Information & Automation. Macau:IEEE, 2017.
 [9] CHEN C, ZHANG J, ZHANG D, et al. Control and flight test of a tilt-rotor unmanned aerial vehicle[J]. International Journal of Advanced Robotic Systems, 2017, 14(1):1-12.
 [10] OWENS B , COX D , MORELLI E . Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project[C]// Aiaa Aerodynamic Measurement Technology & Ground Testing Conference. San Francisco,California:AIAA,2006:1-11.
 [11] STEVENS B , LEWIS F , JOHNSON E N . Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition[M]. Hoboken,New Jersey: Wiley , 2015.
[12] BOIFFIER J L. The dynamics of flight: the equations in Dynamics of Flight Series [M]. Hoboken,New Jersey: Wiley, 1998.
[13] 刘志涛, 聂博文, 郭林亮, 等. 风洞虚拟飞行试验中的飞行控制系统快速原型设计与部署技术[J]. 空气动力学学报, 2017(5):700-707.

相似文献/References:

[1]任广山,常 晶,陈为胜.无人机系统智能自主控制技术发展现状与展望[J].控制与信息技术(原大功率变流技术),2018,(06):7.[doi:10.13889/j.issn.2096-5427.2018.06.002]
 REN Guangshan,CHANG Jing,CHEN Weisheng.Present and Prospect of Intelligent Autonomous Control for UAV[J].High Power Converter Technology,2018,(04):7.[doi:10.13889/j.issn.2096-5427.2018.06.002]
[2]孙妙平,丁 楠,年晓红.基于T-S模糊模型的无人机混合H2/H∞控制[J].控制与信息技术(原大功率变流技术),2018,(06):59.[doi:10.13889/j.issn.2096-5427.2018.06.010]
 SUN Miaoping,DING Nan,NIAN Xiaohong.A Mixed H2/H∞ Control Method for UAV Based on T-S Fuzzy Model[J].High Power Converter Technology,2018,(04):59.[doi:10.13889/j.issn.2096-5427.2018.06.010]
[3]徐星辰,付尧明,安斯奇.无人机电动燃油泵流量控制系统设计[J].控制与信息技术(原大功率变流技术),2019,(01):23.[doi:10.13889/j.issn.2096-5427.2019.01.005]
 XU Xingchen,FU Yaoming,AN Siqi.Flow Control of the Electric Fuel Pump for Unmanned Aerial Vehicle[J].High Power Converter Technology,2019,(04):23.[doi:10.13889/j.issn.2096-5427.2019.01.005]
[4]张 勃,蔡远利. 月面定点软着陆次优制导控制一体化设计[J].控制与信息技术(原大功率变流技术),2019,(04):1.[doi:10.13889/j.issn.2096-5427.2019.04.100]
 ZHANG Bo,CAI Yuanli. Integrated Suboptimal Guidance and Control for Lunar Pinpoint Soft Landing[J].High Power Converter Technology,2019,(04):1.[doi:10.13889/j.issn.2096-5427.2019.04.100]
[5]张 勃,蔡远利.月面定点软着陆次优制导控制一体化设计[J].控制与信息技术(原大功率变流技术),2019,(04):70.[doi:10.13889/j.issn.2096-5427.2019.04.100]
 ZHANG Bo,CAI Yuanli.Integrated Suboptimal Guidance and Control for Lunar Pinpoint Soft Landing[J].High Power Converter Technology,2019,(04):70.[doi:10.13889/j.issn.2096-5427.2019.04.100]

备注/Memo

备注/Memo:
收稿日期:2019-05-15
作者简介:聂博文(1981—),男,硕士,高级工程师,研究方向为飞行动力学与控制。
更新日期/Last Update: 2019-08-20