[1]李晓栋,廖宇新,李 珺.基于MFTESO的可重复使用运载火箭多变量有限时间控制方法[J].控制与信息技术(原大功率变流技术),2019,(04):12-17.[doi:10.13889/j.issn.2096-5427.2019.04.003]
 LI Xiaodong,LIAO Yuxin,LI Jun.MFTESO Based Multivariable Finite-time Control for Reusable Rocket[J].High Power Converter Technology,2019,(04):12-17.[doi:10.13889/j.issn.2096-5427.2019.04.003]
点击复制

基于MFTESO的可重复使用运载火箭多变量有限时间控制方法()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年04期
页码:
12-17
栏目:
“中国飞行力学学术年会”专刊
出版日期:
2019-08-05

文章信息/Info

Title:
MFTESO Based Multivariable Finite-time Control for Reusable Rocket
文章编号:
2096-5427(2019)04-0012-06
作者:
李晓栋廖宇新李 珺
(中南大学 航空航天学院,湖南 长沙 410083)
Author(s):
LI Xiaodong LIAO Yuxin LI Jun
( School of Aeronautics and Astronautics, Central South University, Changsha, Hunan 410083, China )
关键词:
可重复使用运载火箭 姿态控制 多变量有限时间扩张状态观测器 多变量有限时间控制器 有限时间稳定
Keywords:
reusable rocket attitude control multivariable finite-time extended state observer multivariable finite-time controller finite-time stabilization
分类号:
V448.2
DOI:
10.13889/j.issn.2096-5427.2019.04.003
文献标志码:
A
摘要:
针对可重复使用运载火箭一子级返回过程中大气层内无动力减速段姿态控制问题,考虑模型不确定性和外界干扰因素的影响,提出了一种基于多变量有限时间扩张状态观测器(multivariable finite-time extended state observer, MFTESO)的多变量有限时间控制方法。基于绕质心运动模型建立面向姿态控制的模型,利用MFTESO对系统状态和总扰动进行估计,并将估计值引入多变量有限时间控制器,以保证对姿态角期望值的准确和快速跟踪控制。基于Lyapunov理论证明了闭环系统有限时间稳定性;将基于MFTESO的多变量有限时间控制方法与非奇异快速终端滑模控制方法作对比,结果表明,前者使运载火箭一子级动态响应过程中的超调量、稳态误差更小,且能在有限时间内跟踪姿态角期望值,为实现垂直回收提供了必要条件。
Abstract:
To solve the attitude control problem for the first-stage of a reusable rocket in atmosphere unpowered deceleration phase, considering the influence of the model uncertainty and external disturbance, a multivariable finite-time control method based on multivariable finite-time extended state observer was proposed. Firstly,the attitude control model is established based on the model of rotational motion. Secondly,the multivariable finite-time extended state observer is used to estimate the system states and the lumped disturbance, and the estimations are introduced into the multivariable finite-time controller to ensure accurate and fast tracking control of the attitude angle expectation value. Then,the finite-time stability of the closed-loop system is guaranteed through Lyapunov theory. The MFTESO based multivariable finite-time control method was compared with the singularity-free fast terminal sliding mode control method. Numerical simulation shows that the former method gives smaller overshoot and steady-state error rates in the dynamic response process, and can track the attitude angle expectation value within a finite time, which also provides the necessary conditions for first-stage of reusable rocket vertical recovery.

参考文献/References:

[1] 王辰, 王小军, 张宏剑, 等. 可重复使用运载火箭发展研究[J]. 飞航导弹, 2018(9): 18-26.
 [2] JEE G, SHARMA K K, RAO K K, et al. Evolution of attitude control law of an Indian re-entry launch vehicle[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2014, 6(3-4): 148-157.
 [3] 徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61(32): 3453-3463.
[4] 钱默抒, 熊克, 王海洋. 重复使用运载火箭精确回收滑模动态面控制[J]. 宇航学报, 2018, 39(8): 879-888.
[5] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83: 70-79.
[6] 窦立谦, 毛奇, 苏沛华. 基于自适应模糊H∞控制的可重复使用运载器再入姿态控制[J]. 控制与决策, 2018, 33(7): 32-40.
[7] SHAO X L, WANG H L. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties[J]. ISA Transactions, 2015, 54: 27-38.
[8] WANG Z, WU Z, DU Y J. Robust adaptive backstepping control for reentry reusable launch vehicles[J]. Acta Astronautica, 2016, 126: 258-264.
 [9] 胡超芳, 刘运兵. 基于ESO的高超声速飞行器模糊自适应姿态控制[J]. 航天控制, 2015, 33(3): 45-51.
[10] LI H J, CAI Y L. On SFTSM control with fixed-time convergence[J]. IET Control Theory and Applications, 2017, 11(6): 766-773.
[11] TIAN B L, SU R, YOU M, et al. Comprehensive design of disturbance observer and non-singular terminal sliding mode control for reusable launch vehicles[J]. IET Control Theory and Applications, 2015, 9(12): 1821-1830.
[12] SHI S , XU S Y , YU X , et al. Robust output-feedback finite time regulator of systems with mismatched uncertainties bounded by positive functions[J]. IET Control Theory and Applications, 2017, 11(17): 3107-3114.
 [13] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems, 2005, 17(2): 101-127.
[14] TIAN B L, YIN L P, WANG H. Finite time reentry attitude control based on adaptive multivariable disturbance compensation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 1-9.

相似文献/References:

[1]谢 磊,张洪波,周 祥,等.基于组合算法的运载火箭一子级动力垂直回收轨迹规划[J].控制与信息技术(原大功率变流技术),2019,(04):79.[doi:10.13889/j.issn.2096-5427.2019.04.013]
 XIE Lei,ZHANG Hongbo,ZHOU Xiang,et al.Trajectory Planning of First Stage Rocket Powered Vertical Recovery Using a Hybrid Optimization Method[J].High Power Converter Technology,2019,(04):79.[doi:10.13889/j.issn.2096-5427.2019.04.013]

备注/Memo

备注/Memo:
收稿日期:2019-05-15
作者简介:李晓栋(1996—),男,硕士研究生,主要研究方向为可重复使用运载火箭姿态控制。
基金项目:航天器设计优化与动态模拟技术教育部重点实验室(北京航空航天大学)开放基金(2019KF006)
更新日期/Last Update: 2019-08-20