[1]江秀强,李 爽.考虑不确定性的火星进入制导方法研究进展[J].控制与信息技术(原大功率变流技术),2019,(04):6-11.[doi:10.13889/j.issn.2096-5427.2019.04.002]
 JIANG Xiuqiang,LI Shuang.Progress of the Research of Guidance Methods for Mars Entry Considering Uncertainty[J].High Power Converter Technology,2019,(04):6-11.[doi:10.13889/j.issn.2096-5427.2019.04.002]
点击复制

考虑不确定性的火星进入制导方法研究进展()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年04期
页码:
6-11
栏目:
“中国飞行力学学术年会”专刊
出版日期:
2019-08-05

文章信息/Info

Title:
Progress of the Research of Guidance Methods for Mars Entry Considering Uncertainty
文章编号:
2096-5427(2019)04-0006-06
作者:
江秀强李 爽
(南京航空航天大学 航天学院, 江苏 南京 210016)
Author(s):
JIANG Xiuqiang LI Shuang
( College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China )
关键词:
轨迹规划火星进入制导不确定性标称轨迹制导预测校正制导鲁棒优化
Keywords:
trajectory planning Mars entry guidance uncertainty reference-tracking guidance predictor-corrector guidance robust optimization
分类号:
V448;O231
DOI:
10.13889/j.issn.2096-5427.2019.04.002
文献标志码:
A
摘要:
当前,火星大气进入的初始状态不确定性和动力学参数不确定性已经成为制约火星进入制导技术发展的瓶颈,为进一步提高火星进入制导的精度,考虑不确定性的火星进入制导技术成为了近年来的研究热点。文章对火星进入制导技术发展的主要挑战和现有方法进行了梳理,对考虑不确定性的火星进入制导技术的改进发展现状进行了分类总结,并对存在的主要问题和可能的解决途径进行了分析和展望。
Abstract:
The initial state uncertainty and the dynamic parameter uncertainty of Mars atmospheric entry are the bottlenecks restricting the development of Mars entry guidance technique. In order to further improve the accuracy, Mars entry guidance technique considering the uncertainties has become a research hotspot in recent years. This paper sorts out the main challenges and existing methods of the development of Mars entry guidance firstly. Then, the improvement and the state-of-the-art of Mars entry guidance considering uncertainty are classified and summarized. Finally, the main open problems and potential solutions are analyzed and discussed.

参考文献/References:

[1] LI S, JIANG X. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69: 40-57.
[2] YU Z, CUI P, CRASSIDIS J L. Design and optimization of navigation and guidance techniques for Mars pinpoint landing: review and prospect[J]. Progress in Aerospace Sciences, 2017, 94: 82-94.
[3] JIANG X, LI S. Uncertainty quantification for Mars atmospheric entry using polynomial chaos and spectral decomposition[C]// AIAA Guidance, Navigation, and Control Conference, AIAA-2018-1317. Kissimmee, Florida, 2018.
[4] DIERLAM T A. Entry vehicle performance analysis and atmospheric guidance algorithm for precision landing on Mars[D]. Boston: Massachusetts Institute of Technology, 1990.
 [5] L?VESQUE J F. Advanced navigation and guidance for high-precision planetary landing on Mars[D]. Quebec: Sherbrooke, 2006.
[6] HALDER A, BHATTACHARYA R. Dispersion analysis in hypersonic flight during planetary entry using stochastic Liouville equation[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 459-474.
 [7] LORENZONI L V, SANMARTIN M, STELTZNER A, et al. Preliminary assessment of MSL EDL sensitivity to Martian environments[C]//Aerospace Conference. IEEE, 2007.
[8] SHIDNER J D, DAVIS J L, CIANCIOLO A D, et al. Large mass, entry, descent and landing sensitivity results for environmental, performance, and design parameters[C]// AIAA/AAS Astrodynamics Specialist Conference, AIAA 2010-7973. Toronto, Ontario, Canada, 2010.
[9] BENITO M J. Advances in spacecraft atmospheric entry guidance[D]. Irvine: University of California, 2010.
 [10] 李爽, 江秀强. 火星进入减速器技术综述与展望[J]. 航空学报, 2015, 36(2): 422-440.
[11] STEINFELDT B A, GRANT M J, MATZ D A, et al. Guidance, navigation, and control system performance trades for Mars pinpoint landing[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 188-198.
[12] WOLF A A, CASOLIVA J, MANRIQUE J B, et al. Improving the landing precision of an MSL-class vehicle[C]//Aerospace Conference . IEEE, 2012.
[13] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control and Dynamics, 1998, 21(2): 193-207.
[14] 任高峰. 火星精确着陆轨迹规划与制导算法研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
 [15] WANG Z, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2603-2615.
[16] LIANG Z, DUAN G, REN Z. Mars entry guidance based on an adaptive reference drag profile[J]. Advances in Space Research, 2017, 60: 692-701.
[17] SEEBINDER D, BUSKENS C. Real-time atmospheric entry trajectory computation using parametric sensitivities[C]//6th International Conference on Astrodynamics Tools and Techniques .Darmstadt, German, 2016.
[18] ZHENG Y, CUI H. Mars atmospheric entry guidance using a sensitivity method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1672-1684.
[19] FURFARO R, WIBBEN D R. Mars atmospheric entry guidance via multiple sliding surface guidance for reference trajectory tracking[C]// AIAA/AAS Astrodynamics Specialist Conference, AIAA 2012-4435. Minneapolis, Minnesota, 2012.
[20] WU C, LI S H, YANG J, et al. Disturbance observer based constrained multi-model predictive control for Mars entry trajectory tracking[C]// IEEE Chinese Guidance, Navigation and Control Conference, 2014.
[21] HUANG Y C, LI H Y, ZHANG J, et al. Mars atmospheric entry guidance design by sliding mode disturbance observer-based control[J]. Procedia Engineering, 2015, 99: 1062-1075.
[22] DAI J, XIA Y Q. Mars atmospheric entry guidance for reference trajectory tracking[J]. Aerospace Science and Technology, 2015, 45: 335-345.
 [23] LU K, XIA Y, SHEN G, et al. Sliding mode control for Mars entry based on extended state observer[J]. Advances in Space Research, 2017, 60: 2009-2020.
 [24] XIA Y, CHEN R, PU F, et al. Active disturbance rejection control for drag tracking in mars entry guidance[J]. Advances in Space Research, 2014, 53(5): 853-861.
[25] ZHAO Z, YANG J, LI S, et al. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance[J]. Advances in Space Research, 2016, 57(12): 2508-2518.
[26] ZHAO Z, YANG J, LI S, et al. Finite-time super-twisting sliding mode control for Mars entry trajectory tracking[J]. Journal of the Franklin Institute, 2015, 352(11): 5226-5248.
 [27] DAI J, GAO A, XIA Y. Mars atmospheric entry guidance for reference trajectory tracking based on robust nonlinear compound controller[J]. Acta Astronautica, 2017, 132: 221-229.
[28] SHEN G, XIA Y, ZHANG L, et al. A new compound control for Mars entry guidance[J]. Advances in Space Research, 2018, 62(3): 580-592.
[29] LI S, PENG Y. Neural network-based sliding mode variable structure control for Mars entry[J]. Proceedings of the Institution of Mechanical Engineers-Part G: Journal of Aerospace Engineering, 2012, 226: 1373-1386.
[30] HORMIGO T, SILVA J A, C?MARA F. Nonlinear dynamic inversion-based guidance and control for a pinpoint Mars entry[C]// AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA 2008-6817. Honolulu, Hawall, 2008.
 [31] KRANZUSCH K M. Abort determination with non-adaptive neural networks for the Mars precision landers[J]. Acta Astronautica, 2008, 62(1): 79-90.
 [32] RESTREPO C, VALASEK J. Structured adaptive model inversion controller for Mars atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 937-953.
[33] LI S, PENG Y. Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry[J]. Advances in Space Research, 2012, 49(1): 49-63.
 [34] XIA Y, SHEN G, ZHOU L, et al. Mars entry guidance based on segmented guidance predictor-corrector algorithm[J]. Control Engineering Practice, 2015, 45: 79-85.
[35] ZHENG Y, CUI H, AI Y. Constrained numerical predictor-corrector guidance for Mars precision landing[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1): 179-187.
[36] 李毛毛, 胡军. 火星进入段自适应预测校正制导方法[J]. 宇航学报, 2017, 38(5): 506-515.
[37] 崔平远, 胡海静, 朱圣英. 火星精确着陆制导问题分析与展望[J]. 宇航学报, 2014, 35(3): 245-253.
[38] 王大轶, 郭敏文. 航天器大气进入过程制导方法综述[J]. 宇航学报, 2015, 36(1): 1-8.
[39] 李强, 夏群利, 崔莹莹, 等. 基于大气预估的RLV再入预测制导研究[J]. 北京理工大学学报, 2013, 33(1): 84-88.
 [40] 梁子璇, 任章. 基于在线气动参数修正的预测制导方法[J]. 北京航空航天大学学报, 2013, 39(7): 853-857.
 [41] 卢宝刚. 助推-滑翔导弹轨迹设计与制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[42] 李爽, 江秀强. 火星EDL导航、制导与控制方案综述与启示[J]. 宇航学报, 2016, 37(5): 499-511.
[43] CHAUDHURI A, WAYCASTER G, PRICE N, et al. NASA uncertainty quantification challenge: an optimization-based methodology and validation[J]. Journal of Aerospace Information Systems, 2015, 12(1): 1-25.
 [44] GHANEM R, YADEGARAN I, THIMMISETTY C, et al. Probabilistic approach to NASA Langley research center multidisciplinary uncertainty quantification challenge problem[J]. Journal of Aerospace Information Systems, 2015, 12(1): 170-188.

相似文献/References:

[1]李 柏,张友民,邵之江. 自动驾驶车辆运动规划方法综述[J].控制与信息技术(原大功率变流技术),2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]
 LI Bai,ZHANG Youmin,SHAO Zhijiang. Motion Planning Methodologies for Automated Vehicles: A Critical Review[J].High Power Converter Technology,2018,(04):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]
[2]李 柏,张友民,邵之江.自动驾驶车辆运动规划方法综述[J].控制与信息技术(原大功率变流技术),2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]
 LI Bai,ZHANG Youmin,SHAO Zhijiang.Motion Planning Methodologies for Automated Vehicles: A Critical Review[J].High Power Converter Technology,2018,(04):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]

备注/Memo

备注/Memo:
收稿日期:2019-05-15
作者简介:江秀强(1987—),男,博士,主要研究方向为航天器大气进入下降与着陆的导航制导、轨迹优化、不确定性量化。
基金项目:国家自然科学基金(11672126)
更新日期/Last Update: 2019-08-20