[1]齐 航,袁健全,李 磊,等. 基于深度学习的红外烟幕区域分割技术[J].控制与信息技术(原大功率变流技术),2019,(04):1.[doi:10.13889/j.issn.2096-5427.2019.04.400]
 QI Hang,YUAN Jianquan,LI Lei,et al. A Method of Smoke Area Segmentation for Infrared Images Based on Deep Learning[J].High Power Converter Technology,2019,(04):1.[doi:10.13889/j.issn.2096-5427.2019.04.400]
点击复制

 基于深度学习的红外烟幕区域分割技术()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年04期
页码:
1
栏目:
出版日期:
2019-08-05

文章信息/Info

Title:
 A Method of Smoke Area Segmentation for Infrared Images Based on Deep Learning
作者:
 齐 航1袁健全1 李 磊1任 君2 梁 杰2
 (1. 复杂系统控制与智能协同技术重点实验室,北京 100074;2. 北京机电工程研究所,北京 100074)
Author(s):
 QI Hang1 YUAN Jianquan1 LI Lei1REN Jun2LIANG Jie2
 ( 1.Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing 100074, China;
2. Institute of Mechanical and Electrical Engineering, Beijing 100074, China )
关键词:
 深度学习图像语义分割红外图像粒子系统图像增广
Keywords:
 deep learning image semantic segmentation infrared image particle system data augmentation
分类号:
TP391
DOI:
10.13889/j.issn.2096-5427.2019.04.400
文献标志码:
A
摘要:
红外成像制导系统容易受到烟幕干扰,分割烟幕区域是提高红外成像自动目标识别性能的有效技术途径。文章提出一种基于深度学习的红外烟幕干扰分割技术,针对实拍红外烟幕图像样本获取成本高而难以满足算法训练需求的问题,提出基于粒子系统的红外烟幕仿真技术,并针对性地借助图像增广技术模拟不同成像条件,借助Deeplab v3+ 算法实现烟幕区域分割。文章在零实拍红外图像条件下训练网络,在实拍图像集上测试结果与真实烟幕区域的平均交并比达到79%,实现了红外图像烟幕区域分割。
Abstract:
 Smoke area segmentation is an efficient way to improve the performance of the infrared imaging guidance system, even
though smoke is one of the main disturbances for automatic target recognition. In this paper, we proposed a smoke area segmentation method for infrared images based on deep learning. In order to reduce the cost of data acquisition, the deeplearning network for cloud segmentation is trained on our simulated image data set up by particle system and data augmentation, which substantially decreases the demand for real smoke images. Then, the Deeplab v3+ algorithm was used for smoke segmentation. When testing on the real image data set, a satisfactory segmentation result with 79 percent has been reached which can meet the usage requirements, illustrating that our method is effective and efficient.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术(原大功率变流技术),2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(04):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术(原大功率变流技术),2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(04):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术(原大功率变流技术),2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(04):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(04):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(04):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术(原大功率变流技术),2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(04):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术(原大功率变流技术),2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(04):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(04):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术(原大功率变流技术),2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
[11]熊群芳,林 军,岳 伟,等. 基于深度学习的疲劳驾驶状态检测方法[J].控制与信息技术(原大功率变流技术),2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.400]
 XIONG Qunfang,LIN Jun,YUE Wei,et al. A Method of Fatigue Driving State Detection Based on Deep Learning[J].High Power Converter Technology,2018,(04):1.[doi:10.13889/j.issn.2096-5427.2018.06.400]
[12]高 群,朱 均,王芊芊,等. 基于鱼眼图像的目标检测算法研究[J].控制与信息技术(原大功率变流技术),2019,(03):1.[doi:10.13889/j.issn.2096-5427.2019.03.100]
 GAO Qun,ZHU Jun,WANG Qianqian,et al.Research on the Object Detection Algorithm Based on Fisheye Image[J].High Power Converter Technology,2019,(04):1.[doi:10.13889/j.issn.2096-5427.2019.03.100]

备注/Memo

备注/Memo:
 收稿日期:2019-05-15
作者简介:齐航(1995—),女,硕士研究生,主要研究方向为导航、制导与控制;袁健全(1963—),男,研究员,主要研究方向为导航、制导与控制。
基金项目:国家自然科学基金项目(61803356);国防基础科研计划
(JCKY2017204B064)
更新日期/Last Update: 2019-08-02