[1]谢晓龙,姜 斌,刘剑慰.基于WE-ICA的牵引电机速度传感器微小故障检测与识别[J].控制与信息技术(原大功率变流技术),2019,(02):54-58.[doi:10.13889/j.issn.2096-5427.2019.02.100]
 XIE Xiaolong,JIANG Bin,LIU Jianwei.Incipient Fault Detection and Identification of Traction Motor Speed Sensor Based on WE-ICA[J].High Power Converter Technology,2019,(02):54-58.[doi:10.13889/j.issn.2096-5427.2019.02.100]
点击复制

基于WE-ICA的牵引电机速度传感器微小故障检测与识别()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年02期
页码:
54-58
栏目:
故障诊断
出版日期:
2019-04-05

文章信息/Info

Title:
Incipient Fault Detection and Identification of Traction Motor Speed Sensor Based on WE-ICA
文章编号:
2096-5427(2019)02-0054-05
作者:
谢晓龙姜 斌刘剑慰
(南京航空航天大学,江苏南京 210000)
Author(s):
XIE Xiaolong JIANG Bin LIU Jianwei
( Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210000, China )
关键词:
独立成分分析故障检测与识别微小故障数据驱动速度传感器小波变换
Keywords:
independent component analysis(ICA) fault detection and identification incipient fault data driven speed sensor wavelet transform
分类号:
TP277.3
DOI:
10.13889/j.issn.2096-5427.2019.02.100
文献标志码:
A
摘要:
文章提出了一种基于小波变换和集成独立成分分析(WE-ICA)的牵引电机速度传感器微小故障检测与识别方法。首先,通过小波变换对高速列车牵引电机数据进行滤波处理,减少噪声对微小故障信息的干扰;接着通过独立成分分析(ICA)方法提取故障信息并建立检测统计量;最后利用贝叶斯推理计算统计量的故障概率,并设计集成统计量用于微小故障检测;另外通过加权贡献度对故障进行识别。利用CRH2牵引电机实验平台对该方法进行验证,实验结果证明了该方法的有效性和实用性。
Abstract:
It presented a method for detecting and identifying incipient faults in traction motor speed sensor of high-speed train based on wavelet transform and ensemble independent component analysis (WE-ICA). Firstly, the data of traction motor of high-speed train are filtered by wavelet transform to reduce the interference of noise to the information of incipient faults. Secondly, the fault information is extracted by independent component analysis (ICA) and the detection statistics are established. Finally, the probability of system faults is calculated by Bayesian reasoning and the ensemble statistics are designed. In addition, weighted contribution plot is used to identify the fault. The proposed method was validated by CRH2 traction motor experimental platform. Experimental results show the effectiveness and practicability of the proposed method.

参考文献/References:

[1] DING S X. Model-based Fault Diagnosis Techniques:Design Schemes, Algorithms, and Tools[M]. [S. l.]:Springer, 2013:4-8.
[2] MAO Z H, TAO G, JIANG B, et al. Adaptive actuator compensation of position tracking for high-speed trains with disturbances[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7):5706-5717.
[3] JIANG B, MARCEL S, VINCENT C. Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters[J]. International Journal of Control, 2004, 77(4):367-383.
 [4] CHEN H T, JIANG B, LU N Y, et al. Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6):4819-4830.
[5] LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5):467-485.
 [6] CHEN H T, JIANG B, LU N Y. Data-Driven Incipient Sensor Fault Estimation with Application in Inverter of High-Speed Railway[J]. Mathematical Problems in Engineering, 2017:1-13.
[7] CHEN H T, JIANG B, LU N Y, et al. Multi-mode kernel principal component analysis–based incipient fault detection for pulse width modulated inverter of China Railway High-speed 5[J]. Advances in Mechanical Engineering, 2017, 9(10):1-12.
[8] TONG C, PALAZOGLU A, YAN X, et al. Improved ICA for process monitoring based on ensemble learning and Bayesian inference[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 135(14):141-149.
 [9] TONG C, LAN T, SHI X. Ensemble modified independent component analysis for enhanced non-Gaussian process monitoring[J]. Control Engineering Practice, 2017, 58:34-41.
[10] LU S, YU H, DONG H, et al. Single-step prediction method of burning zone temperature based on real-time wavelet filtering and KELM[J]. Engineering Applications of Artificial Intelligence, 2018, 70:142-148.
 [11] PRIYA K D, RAO G S, RAO P S V S. Comparative Analysis of Wavelet Thresholding Techniques with Wavelet-wiener Filter on ECG Signal[J]. Procedia Computer Science, 2016, 87:178-183.
 [12] HYV?RINEN A, HURRI J, HOYER P O. Independent component analysis[M]. Kluwer Academic Publishers, 1998:171-180.
[13] CHEN Q, WYNNE R J, GOULDING P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5):531-543.

相似文献/References:

[1]谢晓龙,姜 斌,刘剑慰. 基于WE-ICA的牵引电机速度传感器微小故障检测与识别[J].控制与信息技术(原大功率变流技术),2019,(02):1.
 XIE Xiaolong,JIANG Bin,LIU Jianwei. Incipient Fault Detection and Identification of Traction Motor Speed Sensor Based on WE-ICA[J].High Power Converter Technology,2019,(02):1.

备注/Memo

备注/Memo:
收稿日期:2018-12-23
作者简介:谢晓龙(1994—),男,硕士研究生,主要从事故障诊断方法研究;姜斌(1966—),男,教授,博士生导师,主要研究方向为故障诊断与容错控制。
基金项目:国家自然科学基金资助项目(61490703)
更新日期/Last Update: 2019-04-19