[1]史俊旭,陈致初,符敏利,等.电动汽车用永磁同步电机NEDC工况下效率优化方法[J].控制与信息技术(原大功率变流技术),2019,(01):50-55.[doi:10.13889/j.issn.2096-5427.2019.01.010]
 SHI Junxu,CHEN Zhichu,FU Minli,et al.Efficiency Optimization for PMSM of Electric Vehicle in the NEDC Condition[J].High Power Converter Technology,2019,(01):50-55.[doi:10.13889/j.issn.2096-5427.2019.01.010]
点击复制

电动汽车用永磁同步电机NEDC工况下效率优化方法()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年01期
页码:
50-55
栏目:
电力与传动控制
出版日期:
2019-02-05

文章信息/Info

Title:
Efficiency Optimization for PMSM of Electric Vehicle in the NEDC Condition
文章编号:
2096-5427(2019)01-0050-06
作者:
史俊旭陈致初符敏利李伟业王 禹
(中车株洲电力机车研究所有限公司,湖南 株洲 412001)
Author(s):
SHI Junxu CHEN Zhichu FU Minli LI Weiye WANG Yu
( CRRC Zhuzhou Institute Co.,Ltd., Zhuzhou, Hunan 412001,China )
关键词:
永磁同步电机NEDC工况能量中心点电动汽车
Keywords:
PMSM(permanent magnet synchronous machine) new European driving cycle points representative of the energy electric vehicle
分类号:
TM351
DOI:
10.13889/j.issn.2096-5427.2019.01.010
文献标志码:
A
摘要:
文章介绍了一种电动汽车用永磁同步电机的设计方法,其在满足电机牵引特性、热设计和体积限制要求的前提下能实现电机在整车NEDC(new European drive cycle)路谱工况下的效率最优;通过对乘用车NEDC路谱工况下能量消耗点的分布进行分析,引入能量效率中心点概念,实现在NEDC路谱工况下对电机能耗和效率的快速评估,为电机效率的定向优化设计提供依据;结合电机铜耗和铁耗分配优化技术,分别对基于能量中心点的效率优化方案和传统的额定点效率最优方案进行对比并通过试验,验证了该设计方案的有效性和实用性。
Abstract:
It presented a design method for PMSM of electric vehicle motor that achieves optimum efficiency against the NEDC (new European drive cycle), while satisfies the required torque-speed operation range and other thermal and volumetric design constraints. By analyzing the energy distribution points of the NEDC, the energy efficiency of the motor can be characterized against a number of representative points. This dramatically decreases the computation time of the design process and provides the basis for the directional optimization design of efficiency. Lastly, combined copper and iron consumption distribution optimization technology, the utility of the design technique proves its superiority compared with the traditional nominal point efficiency optimization method. Effectiveness of the proposed design has been varidated by experimental results.

参考文献/References:

[1] CHAN C C. An overview of electric vehicle technology[J]. Proceedings of the IEEE, 1993, 81(9): 1202-1213.
 [2] CHAN C C. The state of the art of electric, hybrid, and fuel cell vehicles [J]. Proc. IEEE, 2007,95(4): 704-718.
[3] ZHU Z Q, HOWE D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles [J]. Proceedings of the IEEE, 2007,95(4): 746-765.
 [4] ZHU Z Q, CHAN C C. Electrical machine topologies and technologies for electric, hybrid, and fuel cell vehicles [C]//IEEE Vehicle Power & Propulsion Conference. Harbin,2008:1-6.
[5] DE SANTIAGO J, BERNHOFF H, EKERGARD B, et al. Electrical motor drivelines in commercial all-electric vehicles: A review [J]. IEEE Trans. Veh. Technol., 2012, 61(2): 475-484.
[6] MORRISON P, BINDER A, FUNIERU B, et al. Drive train design for medium sized zero emission electric vehicles[C]//Proc. EPE Conf. Barcelona, 2009: 1-10.
[7] KREUAWAN S, GILLON F, BROCHET P. Comparative study of design approach for electric machine in traction application[J]. Int. Rev. Elect. Eng., 2008, 3(3): 455-465.
[8] SHAHIDINEJAD S, BIBEAU E, FILIZADEH S. Statistical development of a duty cycle for plug-in vehicles in a North American urban setting using fleet information[J]. IEEE Trans. Veh. Technol., 2010, 59(8): 3710-3719.
[9] LAZARI P, WANG J B, CHEN L. A Computationally Efficient Design Technique for Electric-Vehicle Traction Machines[J]. IEEE Trans.Ind. Appl., 2014, 50(5): 3203-3213.
 [10] BUYUKDEGIRMENCI V T, BAZZI A M, KREIN P T. Evaluation of induction and permanent magnet synchronous machines using drive-cycle energy and loss minimization in tractions application [J]. IEEE Trans. Ind. Appl., 2014, 50(1): 395-403.
 [11] HOANG E, LECRIVAIN M, HLIOUI S, et al. Hybrid excitation synchronous permanent magnets synchronous machines optimally designed for hybrid and full electrical vehicle[C]//Proc. 8th IEEE ICPEECCE Asia. Jeju, Korea, 2011: 153-160.
[12] HUNG N P, HOANG E, GABSI M. Performance synthesis of permanent-magnet synchronous machines during the driving cycle of a hybrid electric vehicle[J]. IEEE Trans. Veh. Technol., 2011, 60(5): 1991-1998.
 [13] PELLEGRINO G, VAGATI A, BOAZZO B. Comparison of induction and PM synchronous motor drives for EV application including design examples[J]. IEEE Trans. Ind. Appl., 2012, 48(6): 2322-2332.

相似文献/References:

[1]石 敏,等.一种在超调区快速响应的PMSM无位置传感器控制策略[J].控制与信息技术(原大功率变流技术),2015,(01):10.[doi:10.13889/j.issn.2095-3631.2015.01.002]
 SHI Min,FENG Janghua,et al.A Strategy of Position Sensorless Control for PMSM Fast Response in Over-modulation Range[J].High Power Converter Technology,2015,(01):10.[doi:10.13889/j.issn.2095-3631.2015.01.002]
[2]彭 俊,李益丰,符敏利.永磁同步电机铁耗的计算与研究[J].控制与信息技术(原大功率变流技术),2015,(01):61.[doi:10.13889/j.issn.2095-3631.2015.01.014]
 PENG Jun,LI Yifeng,FU Minli.Calculation and Study of Permanent Magnet Synchronous Motor Iron Loss[J].High Power Converter Technology,2015,(01):61.[doi:10.13889/j.issn.2095-3631.2015.01.014]
[3]陈慧民.电动汽车永磁同步电机堵转损坏机理分析及预防措施[J].控制与信息技术(原大功率变流技术),2015,(05):54.[doi:10.13889/j.issn.2095-3631.2015.05.011]
 CHEN Huimin.Damage Mechanism Analysis and Preventive Measures of the Stalled Permanent Magnet Synchronous Motor in Electric Vehicle[J].High Power Converter Technology,2015,(01):54.[doi:10.13889/j.issn.2095-3631.2015.05.011]
[4]丁 杰,张平,李益丰,等.永磁同步电机的三维流场温度场耦合计算[J].控制与信息技术(原大功率变流技术),2014,(06):46.[doi:10.13889/j.issn.2095-3631.2014.06.010]
 DING Jie,ZHANG Ping,LI Yifeng,et al.Coupling Calculation of 3D Flow Field & Temperature Field for Permanent Magnet Synchronous Motor[J].High Power Converter Technology,2014,(01):46.[doi:10.13889/j.issn.2095-3631.2014.06.010]
[5]郭淑英,李坤,彭俊.采用分数槽绕组降低永磁同步电机齿槽转矩的研究[J].控制与信息技术(原大功率变流技术),2013,(01):56.[doi:10.13889/j.issn.2095-3631.2013.01.013]
 GUO Shu-ying,LI Kun,PENG Jun.Study on Reducing Cogging Torque of Permanent Magnet Synchronous Motor with Fractional-slot Windings[J].High Power Converter Technology,2013,(01):56.[doi:10.13889/j.issn.2095-3631.2013.01.013]
[6]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[7]臧晓笛,田德文.低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen.Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[8]解培金,刘卓,闫磊,等.沈阳地铁二号线车辆永磁同步牵引系统[J].控制与信息技术(原大功率变流技术),2012,(03):8.[doi:10.13889/j.issn.2095-3631.2012.03.002]
 XIE Pei-jin,LIU Zhuo,YAN Lei,et al.Permanent Magnet Synchronous Traction System for the Vehicles of Shenyang Metro Line 2[J].High Power Converter Technology,2012,(01):8.[doi:10.13889/j.issn.2095-3631.2012.03.002]
[9]梁波,彭辉水,刘雄.地铁车辆永磁同步牵引系统粘着控制研究[J].控制与信息技术(原大功率变流技术),2012,(03):17.[doi:10.13889/j.issn.2095-3631.2012.03.004]
 LIANG Bo,PENG Hui-shui,LIU Xiong.Research on Adhesion Control of the Permanent Magnet Synchronous Motor for Metro Vehicle Traction[J].High Power Converter Technology,2012,(01):17.[doi:10.13889/j.issn.2095-3631.2012.03.004]
[10]李华湘,元约平.永磁同步电机的气隙磁场研究及电机特性仿真[J].控制与信息技术(原大功率变流技术),2012,(03):31.[doi:10.13889/j.issn.2095-3631.2012.03.007]
 LI Hua-xiang,YUAN Yue-pin.Study of Air-gap Magnetic Field & Characteristic Simulation for PMSM[J].High Power Converter Technology,2012,(01):31.[doi:10.13889/j.issn.2095-3631.2012.03.007]

备注/Memo

备注/Memo:
收稿日期:2018-08-31
作者简介:史俊旭(1987—),男,设计师,目前主要从事永磁电机的研究和开发工作。
基金项目:国家重点研发计划(2018YFB1201600)
更新日期/Last Update: 2019-02-28