[1]戴伯望,赵香桂,朱淇凉.基于改进BP-SVM-ELM组合预测的光伏 MPPT方法研究[J].控制与信息技术(原大功率变流技术),2019,(01):44-49.[doi:10.13889/j.issn.2096-5427.2019.01.009]
 DAI Bowang,ZHAO Xianggui,ZHU Qiliang.Research on the Photovoltaic MPPT Method Based on Improved BP-SVM-ELM Combination Prediction[J].High Power Converter Technology,2019,(01):44-49.[doi:10.13889/j.issn.2096-5427.2019.01.009]
点击复制

基于改进BP-SVM-ELM组合预测的光伏 MPPT方法研究()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年01期
页码:
44-49
栏目:
电力与传动控制
出版日期:
2019-02-05

文章信息/Info

Title:
Research on the Photovoltaic MPPT Method Based on Improved BP-SVM-ELM Combination Prediction
文章编号:
2096-5427(2019)01-0044-06
作者:
戴伯望赵香桂朱淇凉
(株洲中车时代电气股份有限公司,湖南 株洲 412001)
Author(s):
DAI Bowang ZHAO Xianggui ZHU Qiliang
( Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
光伏发电 最大功率跟踪 组合预测 遗传算法 神经网络 支持向量机 极限学习机
Keywords:
photovoltaic power generation maximum power point tracking combination prediction genetic algorithm neural networks support vector machine extreme learning machine
分类号:
TM615
DOI:
10.13889/j.issn.2096-5427.2019.01.009
文献标志码:
A
摘要:
针对传统最大功率点跟踪方法存在功率振荡和跟踪速度慢的问题,文章提出一种考虑影响光伏输出特性因素变量的组合预测方法。该方法使用遗传算法优化逆向传播神经网络、最小二乘支持向量机和极限学习机分别预测最大功率点对应的电压,然后再通过方差-协方差权值动态分配法来组合预测。通过仿真实验分析,验证了该组合预测方法能够利用各算法自身的优势,并有效地避免其不足,从根本上提高了预测模型的性能。通过与传统的扰动观测法对比,确认采用该方法不仅能保证光伏阵列能够稳定运行在最大功率点,而且有效地缩短了跟踪最大功率点的时间,提高了光伏发电系统效率。
Abstract:
In order to solve the problems of maximum power point tracking(MPPT) such as power oscillation and slow tracking speed when using traditional methods, this paper proposed a combined prediction algorithm that considered variables affecting photovoltaic output characteristics. The algorithm uses genetic algorithm to optimize BP neural network, least squares support vector machine and extreme learning machine (ELM) to predict the voltage of maximum power point respectively, and then adopts variance-covariance(VC) weight dynamic allocation method to combine the predictions. Through experimental simulation analysis, the combined forecasting method can use the advantages of each algorithm, effectively avoiding their deficiencies, and fundamentally improve the performance of the predictive model. Compared with the traditional disturbance observation method, the combined prediction algorithm not only ensures the stable operation of photovoltaic array at the maximum power point, but also effectively saves the time for tracking the maximum power point, which is of great significance to improve the efficiency of photovoltaic power generation system.

参考文献/References:

[1] 德勤研究. 2017清洁能源行业报告[J]. 电器工业, 2017(11):6-26.
 [2] 张兴,曹仁贤. 太阳能光伏并网发电及其逆变控制[M].北京: 机械工业出版社,2011.
 [3] 范钦民,闫飞,张翠芳,等. 基于模糊控制的光伏MPPT算法改进[J]. 太阳能学报,2017, 38(8):2151-2158.
[4] 黄鹏. 基于神经网络预测模型的光伏发电系统MPPT研究[D].北京:华北电力大学,2016.
[5] 张智慧. 基于支持向量回归的光伏发电MPPT算法研究[D].杭州:浙江大学,2013.
 [6] 王薇. 混沌改进群体智能算法研究及其在光伏MPPT中的应用[D].南昌:南昌大学,2017.
 [7] PAPPU S M J , GUMMADI S N . Artificial neural network and regression coupled genetic algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis in bioreactor[J]. Biochemical Engineering Journal, 2017, 120(1):136-145.
[8] 朱霄珣,韩中合. 基于PSO参数优化的LS-SVM风速预测方法研究[J]. 中国电机工程学报,2016,36(23):6337-6342,6598.
[9] 何延昭,王贞艳,郑世强. 基于在线最小二乘支持向量机逆系统的高速永磁同步电机解耦控制[J]. 中国电机工程学报,2016, 36(20):5639-5646,5741.
[10] 刘彩霞,方建军,刘艳霞,等.基于多类特征融合的极限学习在四足机器人野外地形识别中的应用[J]. 电子测量与仪器学报,2018,32(2):97-105.
[11] 吕智林,谭颖,李捷,等. 基于Markov-ELM的独立混合微网分布式电源多目标容量优化配置[J]. 中国电机工程学报, 2017,37(7):1927-1936.
[12] YADAV B,CH S,MATHUR S S,et al. Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction[J]. Journal of Water and Land Development,2017,32(1):103-112.

相似文献/References:

[1]刘玉柱,郭积晶,管仁德,等.250 kW 光伏并网逆变器的工程化研制[J].控制与信息技术(原大功率变流技术),2015,(05):49.[doi:10.13889/j.issn.2095-3631.2015.05.010]
 LIU Yuzhu,GUO Jijing,GUAN Rende,et al.Engineering Research on 250 kW PV Grid-connected Inverter[J].High Power Converter Technology,2015,(01):49.[doi:10.13889/j.issn.2095-3631.2015.05.010]
[2]程宇旭,李建泉,吴小云,等.局部阴影遮挡对大型并网光伏电站影响的研究[J].控制与信息技术(原大功率变流技术),2014,(05):49.[doi:10.13889/j.issn.2095-3631.2014.05.011]
 CHENG Yuxu,LI Jianquan,WU Xiaoyun,et al.Research on the Impact of Partial Shading on Large-scale[J].High Power Converter Technology,2014,(01):49.[doi:10.13889/j.issn.2095-3631.2014.05.011]
[3]樊京路,易韵岚.基于小波分析的光伏并网逆变器故障诊断[J].控制与信息技术(原大功率变流技术),2014,(05):12.[doi:10.13889/j.issn.2095-3631.2014.05.003]
 FAN Jinglu,YI Yunlan.Fault Diagnosis of Photovoltaic Grid-connected Inverter Based on Wavelet Analysis[J].High Power Converter Technology,2014,(01):12.[doi:10.13889/j.issn.2095-3631.2014.05.003]
[4]陈艺峰,赵香桂,王南,等.光伏并网逆变器零电压穿越控制策略的研究[J].控制与信息技术(原大功率变流技术),2014,(03):16.[doi:10.13889/j.issn.2095-3631.2014.03.007]
 CHEN Yi-feng,ZHAO Xiang-gui,WANG Nan,et al.Research on Zero Voltage Ride-through Control Strategy of Photovoltaic Grid-connected Inverter[J].High Power Converter Technology,2014,(01):16.[doi:10.13889/j.issn.2095-3631.2014.03.007]
[5]张伟伟,童亦斌,杨捷,等.基于三重化DC_DC变换器的光伏直流微网控制研究[J].控制与信息技术(原大功率变流技术),2014,(03):52.[doi:10.13889/j.issn.2095-3631.2014.03.012]
 ZHANG Wei-wei,TONG Yi-bin,YANG Jie,et al.Research on Control Strategy of Photovoltaic Generation in DC Microgrid Based on Three-phase Interleaved DC/DC Converter[J].High Power Converter Technology,2014,(01):52.[doi:10.13889/j.issn.2095-3631.2014.03.012]
[6]翁幸,赵争鸣,贺凡波.几种光伏发电MPPT技术性能的仿真比较[J].控制与信息技术(原大功率变流技术),2014,(03):20.[doi:10.13889/j.issn.2095-3631.2014.03.008]
 WENG Xing,ZHAO Zheng-ming,HE Fan-bo.Simulation Comparison of Several MPPT Methods for Photovoltaic Generation[J].High Power Converter Technology,2014,(01):20.[doi:10.13889/j.issn.2095-3631.2014.03.008]
[7]梅兴亮,廖远辉,吴建雄,等.预装式光伏兆瓦房的散热设计[J].控制与信息技术(原大功率变流技术),2014,(03):80.[doi:10.13889/j.issn.2095-3631.2014.03.018]
 MEI Xing-liang,LIAO Yuan-hui,WU Jian-xiong,et al.Thermal Design of Pre-installed Power Room for Photovoltaic Megawatt-level-inverter[J].High Power Converter Technology,2014,(01):80.[doi:10.13889/j.issn.2095-3631.2014.03.018]
[8]蹇芳,李志勇.光伏逆变器技术现状与发展[J].控制与信息技术(原大功率变流技术),2014,(03):5.[doi:10.13889/j.issn.2095-3631.2014.03.005]
 JIAN Fang,LI Zhi-yong.Technology Status and Future Development of PV Inverter[J].High Power Converter Technology,2014,(01):5.[doi:10.13889/j.issn.2095-3631.2014.03.005]
[9]管仁德,唐洲,廖远辉,等.基于双模块并联的500kW光伏并网逆变器[J].控制与信息技术(原大功率变流技术),2014,(03):32.[doi:10.13889/j.issn.2095-3631.2014.03.001]
 GUAN Ren-de,TANG Zhou,LIAO Yuan-hui,et al.A 500 kW Grid-connected Photovoltaic Inverter with Double Modules Paralleling[J].High Power Converter Technology,2014,(01):32.[doi:10.13889/j.issn.2095-3631.2014.03.001]
[10]陈有根,蹇芳,唐海燕,等.基于交错并联反激拓扑的光伏并网微型逆变器[J].控制与信息技术(原大功率变流技术),2014,(03):39.[doi:10.13889/j.issn.2095-3631.2014.03.002]
 CHEN You-gen,JIAN Fang,TANG Hai-yan,et al.Grid-connected Micro-inverter Based on Interleaved Parallel Flyback Converter[J].High Power Converter Technology,2014,(01):39.[doi:10.13889/j.issn.2095-3631.2014.03.002]

备注/Memo

备注/Memo:
收稿日期:2018-09-06
作者简介:戴伯望(1990—),男,硕士,工程师,主要研究方向为电力电子变流控制、光伏发电系统。
更新日期/Last Update: 2019-02-28