[1]孙妙平,丁 楠,年晓红.基于T-S模糊模型的无人机混合H2/H∞控制[J].控制与信息技术,2018,(06):59-67.[doi:10.13889/j.issn.2096-5427.2018.06.010]
 SUN Miaoping,DING Nan,NIAN Xiaohong.A Mixed H2/H∞ Control Method for UAV Based on T-S Fuzzy Model[J].High Power Converter Technology,2018,(06):59-67.[doi:10.13889/j.issn.2096-5427.2018.06.010]
点击复制

基于T-S模糊模型的无人机混合H2/H∞控制()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2018年06期
页码:
59-67
栏目:
控制理论与应用
出版日期:
2018-12-05

文章信息/Info

Title:
A Mixed H2/H∞ Control Method for UAV Based on T-S Fuzzy Model
文章编号:
2096-5427(2018)06-0059-09
作者:
孙妙平丁 楠年晓红
(中南大学 信息科学与工程学院,湖南 长沙 410075)
Author(s):
SUN Miaoping DING Nan NIAN Xiaohong
( School of Information Science and Engineering, Central South University, Changsha, Hunan 410075, China )
关键词:
混合H2/H∞控制T-S模糊误差模型D稳定约束区间矩阵线性矩阵不等式无人机
Keywords:
mixed H2/H∞ control T-S fuzzy error model D stability constraint interval matrix linear matrix inequality UAV(unmanned aerial vehicle)
分类号:
V249.12
DOI:
10.13889/j.issn.2096-5427.2018.06.010
文献标志码:
A
摘要:
为了实现无人机稳定跟踪期望的轨迹,文章提出一种混合H2/H∞的控制策略,其将四旋翼无人机分为高度、位置和姿态3个子系统,并通过选择合适的前件变量对3个子系统分别建立T-S模糊误差模型,然后采用区间矩阵的方法描述升力系数、阻力系数和转动惯量等不确定项。为了保证无人机在微风等外部扰动的影响下能够稳定飞行,基于线性矩阵不等式方法和极点配置理论,文章设计了D稳定约束的混合H2/H∞控制器。四旋翼无人机的仿真结果验证了该控制策略的有效性。
Abstract:
A mixed H2/H∞ control strategy was proposed in this paper to achieve a stable tracking trajectory of the UAV(unmanned aerial vehicle). Firstly, the quadrotor UAV was divided into three subsystems: the altitude, the position and the attitude. By selecting the appropriate premise variables, three T-S fuzzy error models were established. Then the uncertain terms such as lift coefficient, drag coefficient and moments of inertia were described by interval matrix. In order to ensure the UAV can fly stably under the influence of external disturbances such as breezes, a mixed H2/H∞ controller with D stability constraints were designed based on the linear matrix inequality method and pole placement theory. Finally, simulation results of a quadrotor UAV show the effectiveness of the proposed control strategy.

参考文献/References:

[1] ABDOLLAHI T, SALEHFARD S, XIONG C H. Simplified fuzzy-Padé controller for attitude control of quadrotor helicopters[J]. IET Control Theory and Applications, 2018, 12(2):310-317.
[2] CHOI Y C, AHN H S. Nonlinear Control of Quadrotor for Point Tracking: Actual Implementation and Experimental Tests[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3):1179-1192.
[3] LEI W C, LI C Y. On-line aerodynamic identification of quadrotor and its application to tracking control[J]. IET Control Theory and Applications, 2017, 11(17):3097-3106.
[4] MARANTOS P, BECHLIOULIS C P, KYRIAKOPOULOS K J. Robust Trajectory Tracking Control for Small-Scale Unmanned Helicopters With Model Uncertainties[J]. IEEE Transactions on Control Systems Technology,2017, 25(6):2010-2021.
[5] LIU H, ZHAO W B, ZUO Z Y. Robust Control for Quadrotors With Multiple Time-Varying Uncertainties and Delays[J]. IEEE Transactions on Industrial Electronics,2017,64(2):1303-1312.
[6] SHAKEV N G, TOPALOV A V, KAYNAK O. Comparative Results on Stabilization of the Quad-rotor Rotorcraft Using Bounded Feedback Controllers[J]. Journal of Intelligent and Robotic Systems,2012,65(1):389-408.
[7] SALIH A L, MOGHAVVEMI M, HAIDER A F. Flight PID Control Design for a UAV Quadrotor[J]. Scientific Research Essays,2010,23(5):3660-3667.
[8] DYDEK Z T, ANNASWAMY A M, LAVRETSKY E. Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1400-1406.
[9] CAO N, LYNCH A F. Inner-Outer Loop Control for Quadrotor UAVs With Input and State Constraints[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1797-1804.
[10] HU X, WU L, HU C, GAO H. Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle[J]. IET Control Theory and Applications, 2012, 6(9):1238-1249.
[11] XIONG J J, ZHENG E H. Position and attitude tracking control for a quadrotor UAV[J]. ISA Transactions,2014,53(3):725-731.
[12] XU Z W, NIAN X H, XIONG H Y. Robust guaranteed cost tracking control of quadrotor UAV with uncertainties[J]. ISA Transactions,2017,69:157-165.
[13] JUANG Y T. Robust Stability and Robust Pole Assignment of Linear Systems with Structured Uncertainty[J].IEEE Transactions on Automatic Control,1991,36(5):635-637.
[14] JUANG Y T, HONG Z C,WANG Y T. Pole-Assignment for Uncertain Systems with Structured Perturbation[J]. IEEE Transactions on Circuits and Systems,1990, 37(1):107-110.
[15] CHILALI M, GAHINET P, APKARIAN P. Robust Pole Placement in LMI Regions[J]. IEEE Transactions on Automatic Control,1999,44(12): 2257-2270.
[16] CHEN B S, LEE H C, WU C F. Pareto Optimal Filter Design for Nonlinear. Stochastic Fuzzy Systems via Multiobjective H2 /H∞ Optimization[J]. IEEE Transactions on Fuzzy Systems,2015,23(2):387-399.
[17] ZHAO B, XIAN B, ZHANG Y. Nonlinear Robust Adaptive Tracking Control of a Quadrotor UAV Via Immersion and Invariance Methodology[J].IEEE Transactions on Industrial Electronics, 2015, 62(5):2891-2902.
[18] SUN M P, LIU J J, WANG H B, et al. Robust fuzzy tracking control of a quad-rotor unmanned aerial vehicle based on sector linearization and interval matrix approaches[J]. ISA Transactions 2018(80):336-349.
[19] LU J G, CHEN G R. Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach[J]. IEEE Transactions on Automatic Control,2009, 54(6):1294-1299.
[20] MAO W J, CHU J. Quadratic Stability and Stabilization of Dynamic Interval Systems[J].IEEE Transactions on Automatic Control,2003, 48(6):1007-1012.
[21] 俞丽. 鲁棒控制-线性矩阵不等式处理方法[M]. 北京:清华大学出版社,2002:59-61.

备注/Memo

备注/Memo:
收稿日期:2018-09-30
作者简介:孙妙平(1978—),女,博士,副教授,主要研究四旋翼无人机控制及电力系统稳定。
基金项目:国家自然科学基金项目(61403425)
更新日期/Last Update: 2018-12-25