[1]熊群芳,林 军,岳 伟,等. 基于深度学习的疲劳驾驶状态检测方法[J].控制与信息技术,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.400]
 XIONG Qunfang,LIN Jun,YUE Wei,et al. A Method of Fatigue Driving State Detection Based on Deep Learning[J].High Power Converter Technology,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.400]
点击复制

 基于深度学习的疲劳驾驶状态检测方法()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2018年06期
页码:
1
栏目:
出版日期:
2018-12-05

文章信息/Info

Title:
 A Method of Fatigue Driving State Detection Based on Deep Learning
文章编号:
2096-5427(2018)06-0000-00
作者:
 熊群芳林 军岳 伟刘 悦袁 浩游 俊丁 驰
 (中车株洲电力机车研究所有限公司,湖南 株洲 412001)
Author(s):
XIONG Qunfang LIN Jun YUE Wei LIU Yue YUAN Hao YOU Jun DING Chi
 ( CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
 疲劳检测深度学习卷积神经网络Perclos 算法
Keywords:
 fatigue detect deep learning convolutional neural network Perclos algorithm
分类号:
TP181
DOI:
10.13889/j.issn.2096-5427.2018.06.400
文献标志码:
A
摘要:
 目前疲劳驾驶检测算法大多基于单一的人工提取疲劳状态特征实现,且大部分算法结构复杂、鲁棒性低。为此,文章提出一种基于深度学习的疲劳检测方法,它采用卷积神经网络和Landmark 算法来实现人脸图像特征点的自动提取;并使用SVM 算法对疲劳特征进行分类;最后基于Perclos 算法实现视频流图像的疲劳状态检测。实验结果表明,该方法能较好地提取疲劳特征,实现实时疲劳检测,且检测精度达96.8%。
Abstract:
 Current domestic and overseas fatigue recognition algorithms are implemented using fatigue features which are mostly singular and man-made. Most of those algorithms have complex structure, low efficiency and weak adaptability for drivers’ individual behavior habit. To this end, this paper put forward a fatigue recognition algorithm based on deep learning. Firstly, the face image feature points are automatic extracted using convolutional neural network and landmark algorithm. Then the SVM algorithm is used to classify the fatigue characteristics. Finally, the fatigue state of the video stream image is detected based on the Perclos algorithm. The experimental results show that this method can obtain good fatigue characteristics, realize real-time fatigue detection, and its detection accuracy is 96.8%.

参考文献/References:

 [1]韩怀阳. 王秀丽. 机动车驾驶员疲劳驾驶检测系统研究[J]. 内燃机与配件,2016(10):6-7.
[2]李天博, 于梦浩, 吕毅, 等. 基于动态多生理参数的人体疲劳检测研究[J]. 信息技术,2017(11):121-124.
LI T B,YU M J,LV Y,et al. Human fatigue identification based on dynamic multi-physiological parameters[J]. Information Technology,2017(11):121-124.
[3]刘洋洋. 基于多传感器信息融合的驾驶员疲劳检测[D]. 滁州:安徽科技学院,2017.
[4]左艳超. 基于计算机视觉的头部姿态跟踪技术研究与应用[D].北京:北方工业大学,2017.
[5]周慧,周良,丁秋林. 基于深度学习的疲劳状态识别算法[J].计算机科学,2015,42(3):191-194.
ZHOU H,ZHOU L,DING Q L.Fatigue Recognition Algorithm Based on Deep Learning[J]. Computer Science , 2015, 42(3):191-194.
[6]LI L , XIE M , DONG H . A method of driving fatigue detection based on eye location[C]// IEEE International Conference on Communication Software & Networks. China:IEEE, 2011: 480-484.
[7]HUANG G B,LEARNED-MILLER E. Labeled faces in the wild:Updates and new reporting procedures[R]. Massachusetts:University of Massachusetts,2014.
[8]DENG J,DONG W, SOCHER R,et al. ImageNet: A large-scale hierarchical image database[C]// IEEE Conference on. Computer Vision and Pattern Recognition,2009(CVPR 2009). USA :IEEE,2009:248-255.
[9]VAN DE SANDE K E A,UIJLINGS J R R,GEVERS T,et al. Segmentation as selective search for object recognition[C]// International Conference on Computer Vision.Spain:IEEE,2011:1879-1886.
[10]LAL S K L,CRAIG A. A critical review of the psychophusiology of driver fatigue[J]. Biological Psychology,2001: 55(3) : 173-194.
[11]KAZEMI V,SULLIVAN J. One Millisecond Face Alignment with an Ensemble of Regression Trees[C]// IEEE Conference on Computer Vision and Pattern Recognition. USA :IEEE Computer Society, 2014: 1867-1874.
[12]SOUKUPOVE T,CECH J . Real-Time Eye Blink Detection using Facial Landmarks[J]. 21th Computer Vision Winter Workshop,2016:3-5.
[13]陈云华. 基于可拓学与面部视觉特征的精神疲劳识别研究[D].广州:广东工业大学,2013.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(06):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术,2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(06):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术,2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(06):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术,2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术,2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(06):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(06):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术,2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(06):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术,2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(06):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]

备注/Memo

备注/Memo:
 收稿日期:2018—07—11
作者简介:熊群芳(1990—),女,硕士研究生,研究方向为图像处理。
更新日期/Last Update: 2018-11-30