[1]王婧博,刘红兵,杨梦勤,等. 基于虚拟电阻的LCL 型并网逆变器阻尼控制[J].控制与信息技术(原大功率变流技术),2018,(05):1.[doi:10.13889/j.issn.2096-5427.2018.05.300]
 WANG Jingbo,LIU Hongbing,YANG Mengqin,et al. An Active Damping Control Strategy for LCL Grid-Connected Inverter Based on Virtual Resistor[J].High Power Converter Technology,2018,(05):1.[doi:10.13889/j.issn.2096-5427.2018.05.300]
点击复制

 基于虚拟电阻的LCL 型并网逆变器阻尼控制()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2018年05期
页码:
1
栏目:
出版日期:
2018-10-05

文章信息/Info

Title:
 An Active Damping Control Strategy for LCL Grid-Connected Inverter Based on Virtual Resistor
作者:
 王婧博刘红兵杨梦勤李晓丹
 (湖南铁道职业技术学院,湖南 株洲 412001)
Author(s):
 WANG Jingbo LIU Hongbing YANG Mengqin LI Xiaodan
 ( Hunan Railway Professional Technology College, Zhuzhou, Hunan 412001, China )
关键词:
 并网逆变器谐振抑制LCL 滤波器有源阻尼
Keywords:
 grid-connected inverter resonance suppression LCL filter active damping
分类号:
TM641;TM46
DOI:
10.13889/j.issn.2096-5427.2018.05.300
文献标志码:
A
摘要:
 针对LCL 型并网逆变器的谐振问题,采用滤波电容器串联电阻器、滤波电容电流负反馈、滤波电容电压负反馈等传统的阻尼方法会增加系统的损耗或者成本。为此,文章提出一种虚拟阻尼控制方法,其基于逆变器侧电流反馈,与滤波电容器串联电阻器方法等效,不仅能有效抑制并网电流谐振、提高系统稳定性,而且不增加附加成本和系统功率损耗。dSPACE 半实物仿真结果和分布式光伏电站500 kW并网逆变器实验结果验证了该方法的有效性。
Abstract:
 For the resonance of LCL grid-connected inverter, traditional solutions are as damping include filter capacitor and resistance in series , filter capacitor current feedback, filter capacitor voltage feedback and so on, but these approaches lead to increased losses or costs of the system. By derivation the equivalent relation of filter capacitance shunt resistance, a novel active damping method based on inverter output current feedback was put forward, which can effectively inhibit grid current harmonic and improve the system stability with no additional cost and system power loss. The experiment of the dSPACE HIL simulation platform and the experiment of 500 kW inverter of the distributed photovoltaic power station verified the validity of the method.

相似文献/References:

[1]刘海涛,唐 龙.基于LLCL 型滤波器的三相并网逆变器控制 策略仿真分析[J].控制与信息技术(原大功率变流技术),2015,(03):15.[doi:10.13889/j.issn.2095-3631.2015.03.004]
 LIU Haitao,TANG Long.Simulation Analysis of Control Strategy for Three-phase Grid-connected Inverter Based on LLCL Filter[J].High Power Converter Technology,2015,(05):15.[doi:10.13889/j.issn.2095-3631.2015.03.004]
[2]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术(原大功率变流技术),2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[3]刘玉柱,郭积晶,管仁德,等.250 kW 光伏并网逆变器的工程化研制[J].控制与信息技术(原大功率变流技术),2015,(05):49.[doi:10.13889/j.issn.2095-3631.2015.05.010]
 LIU Yuzhu,GUO Jijing,GUAN Rende,et al.Engineering Research on 250 kW PV Grid-connected Inverter[J].High Power Converter Technology,2015,(05):49.[doi:10.13889/j.issn.2095-3631.2015.05.010]
[4]张 明. 现代电力电子集成技术综述[J].控制与信息技术(原大功率变流技术),2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[5]樊京路,易韵岚.基于小波分析的光伏并网逆变器故障诊断[J].控制与信息技术(原大功率变流技术),2014,(05):12.[doi:10.13889/j.issn.2095-3631.2014.05.003]
 FAN Jinglu,YI Yunlan.Fault Diagnosis of Photovoltaic Grid-connected Inverter Based on Wavelet Analysis[J].High Power Converter Technology,2014,(05):12.[doi:10.13889/j.issn.2095-3631.2014.05.003]
[6]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术(原大功率变流技术),2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(05):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[7]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(05):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[8]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[9]王玲玲,胡书举,孟岩峰,等.光伏并网逆变器效率评价方法研究[J].控制与信息技术(原大功率变流技术),2013,(05):17.[doi:10.13889/j.issn.2095-3631.2013.05.007]
 WANG Ling-ling,HU Shu-ju,MENG Yan-feng,et al.Research on Efficiency Evaluation Method of PV Grid-connected Inverter[J].High Power Converter Technology,2013,(05):17.[doi:10.13889/j.issn.2095-3631.2013.05.007]
[10]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术(原大功率变流技术),2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(05):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]

备注/Memo

备注/Memo:
 收稿日期:2018-04-27
作者简介:王婧博(1986-),女,研究生,工程师,主要从事并网变流技术研究。
更新日期/Last Update: 2018-09-28