[1]刘 昊,郑泽东,李永东,等. 电动汽车V2G 技术在城市轨道交通牵引系统中的应用[J].控制与信息技术(原大功率变流技术),2018,(05):1.[doi:10.13889/j.issn.2096-5427.2018.05.100]
 LIU Hao,ZHENG Zedong,LI Yongdong,et al. A Novel Urban Rail System Integrated with Electric Vehicle V2G Technology[J].High Power Converter Technology,2018,(05):1.[doi:10.13889/j.issn.2096-5427.2018.05.100]
点击复制

 电动汽车V2G 技术在城市轨道交通牵引系统中的应用()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2018年05期
页码:
1
栏目:
出版日期:
2018-10-05

文章信息/Info

Title:
 A Novel Urban Rail System Integrated with Electric Vehicle V2G Technology
作者:
 刘 昊郑泽东李永东徐 政
 (清华大学 电机工程与应用电子技术系, 北京 100084)
Author(s):
 LIU Hao ZHENG Zedong LI Yongdong XU Zheng
 ( Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China )
关键词:
 城市轨道交通牵引 电动汽车 电力电子变压器 能量回馈电动汽车与电网互动物联网
Keywords:
 urban rail transit electrical vehicle power electronics transformer (PET) braking energy feedback V2G(vehicle to grid)internet to things(IOT)
分类号:
TM76
DOI:
10.13889/j.issn.2096-5427.2018.05.100
文献标志码:
A
摘要:
 为缓解城市轨道交通系统牵引网电压和功率的剧烈波动,实际系统中通过安装多种制动能量回馈装置和储能设备来平滑负载波动,减少制动电阻上的能量损失。随着电动汽车的不断普及和V2G(Vehicle to Grrid)技术的发展,可再生能源波动问题可以得到很大程度缓解,电网稳定性得到提高,也为用户带来一定收益。文章提出了一种将电动汽车与城市轨道交通相结合的新型系统架构,利用电动汽车电池消纳列车制动回馈能量,在实现平抑牵引网电压波动的同时,为电动汽车用户带来收益;架构中的电能变换装置基于电力电子变压器实现,采用LLC串联式谐振变换器拓扑,在实现隔离的同时,具有较高的安全性和较小的体积。仿真结果验证了该技术的可行性和有效性。
Abstract:
 To smooth the fluctuation of voltage and power in traction grid of urban rail transit system, various energy feedback units and energy storage devices are placed in the actual system. Consequently, violent fluctuation is relieved and losses on braking resistors have reduced. Accompanied by the popularity of electric vehicles (EVs) and development of vehicle-to-grid (V2G), efficiency of city grid can be improved and fluctuation of renewable energy can be reduced, meanwhile the owners of EVs can also get profits. In this study, a novel architecture integrating EVs with urban rail transit was put forward, which can absorb braking energy nearby and bring profits. By applying power electronics transformer (PET) on the V2G converter which comprises of a cascaded topology of LLC converter and three phase converter, losses are reduced while electrical isolation is achieved. Simulation results verified the feasibility and validity of the architecture.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术(原大功率变流技术),2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术(原大功率变流技术),2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术(原大功率变流技术),2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(05):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(05):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术(原大功率变流技术),2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(05):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术(原大功率变流技术),2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术(原大功率变流技术),2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(05):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]

备注/Memo

备注/Memo:
收稿日期:2018-08-27
作者简介:刘昊(1994-),男,在读硕士研究生,研究方向为电力电子变压器、轨道交通能源互联网。
基金项目:国家自然科学基金面上项目(51777111);北京市自然科学基金重点项目(3161001)
更新日期/Last Update: 2018-09-28