[1]王同辉,张慧源,许 为,等.基于EOVW 指数和C&RT 决策树的逆变过流故障诊断研究及应用[J].控制与信息技术(原大功率变流技术),2018,(01):81-86.[doi:10.13889/j.issn.2096-5427.2018.01.016]
 WANG Tonghui,ZHANG Huiyuan,XU Wei,et al.Research and Application of Inverter Over-current Fault Diagnosis Based on EOVW Index and C&RT Decision Tree[J].High Power Converter Technology,2018,(01):81-86.[doi:10.13889/j.issn.2096-5427.2018.01.016]
点击复制

基于EOVW 指数和C&RT 决策树的逆变过流故障诊断研究及应用()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2018年01期
页码:
81-86
栏目:
故障诊断
出版日期:
2018-02-05

文章信息/Info

Title:
Research and Application of Inverter Over-current Fault Diagnosis Based on EOVW Index and C&RT Decision Tree
文章编号:
2096-5427(2018)01-0081-06
作者:
王同辉张慧源许 为江 平
(中车株洲电力机车研究所有限公司,湖南 株洲 412001)
Author(s):
WANG Tonghui ZHANG Huiyuan XU Wei JIANG Ping
( CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
逆变过流故障诊断决策树小波分析智能化
Keywords:
inverter over-current fault diagnosis decision tree wavelet analysis intelligent
分类号:
TM46
DOI:
10.13889/j.issn.2096-5427.2018.01.016
文献标志码:
A
摘要:
针对变流器运行过程中出现逆变过流故障的原因分析及分类识别问题,提出了一种结合EOVW(energy of variation wavelet)指数和决策树的系统诊断方案,其以小波分析提取的变流器输出电压、电流等信号特征为基础,利用C&RT 决策树的数据挖掘思维和分类功能,构建了一套系统的逆变过流故障诊断模型,实现了对变流器逆变过流故障的有效定位。该方案最终输出为一套智能化识别系统,方便快捷、无需人工,且可随着数据累积进一步调整和优化。
Abstract:
To solve the problem on the reason of inverter over-current fault and the classification recognition during converter operation, it presented a system diagnosis scheme combining EOVW index and decision tree. Based on the signal characteristics of converter output voltage and current which extracted from wavelet analysis, it built a system of inverter over-current fault diagnosis model using C&RT decision tree data mining thinking and classification function, which can locate effectively the reason on the inverter over-current fault. Final output of the scheme is a set of intelligent identification system, which is convenient and fast, without manual interception, and can be further adjusted and optimized with the accumulation of data.

参考文献/References:

[1]戴鹏,蔡云,符晓,等. 基于小波包变换和神经网络的变流器故障诊断[J]. 电源技术应用,2011(8):17-22.
 DAI P, CAI Y, FU X, et al. Fault Diagnosis for Inverters Based on Wavelet Packet Transform and Neural Network[J]. Power Supply Technologies and Applications, 2011(8):17-22.
[2]刘松柏,蒋新华,陈特放. 电力机车主变流器故障智能诊断系统[J]. 机车电传动,2005(3):57-62.
LIU S B,JIANG X H,CHEN T F. Intelligent Fault Diagnosis System for Main Converter of Electric Locomotive[J]. Electric Drive for Locomotives,2005(3):57-62.
[3]樊京路,易韵岚. 基于小波分析的光伏并网变流器故障诊断[J]. 大功率变流技术,2014(5):12-16.
FAN J L, YI Y L. Fault Diagnosis of Photovoltaic Grid-connected Inverter Based on Wavelet Analysis[J]. High Power Converter Technology,2014(5):12-16.
[4]GONZALEZ M. RAISON B, BACHA S. Fault diagnosis in a gridconnected photovoltaic system by applying a signal approach[J]. IEEE Industrial Electronics Society, 2011(6):1354-1359.
[5]崔博文,任章. 基于傅里叶变换和神经网络的逆变器故障检测与诊断[J]. 电工技术学报,2006(7):37-43.
CUI B W, REN Z. Fault Detection and Isolation of Inverter Based on FFT and Neural Network[J]. Transactions of China Electrotechnical Society, 2006(7):37-43.
[6]BARBU M, KAMINSKY E J, TRAHAN R E. Fractional Fourier transform for sonar signal processing[C]//Proceedings of MTS/ IEEE. OCEANS, 2005:1630-1635.
[7]罗铁军,徐培刚,丁培义, 等. HXD1C 型电力机车逆变过流故障分析[J]. 机车电传动,2014(6):104-110.
[8]高连华,孙伟. 变异系数在可靠性中的应用[J]. 装甲兵工程学院学报,2004,18(4):5-8.
 GAO L H, SUN W. Application of Variation Factor in Reliability Engineering[J]. Journal of Academy of Armored Force Engineering, 2004, 18 (4):5-8.
[9]黄奇. 基于CHAID决策树的个人收入分析[J]. 数学理论与应用, 2009(4):33-37.
HUANG Q. Analysis of Personal Income Based on CHAID Decision Tree[J]. Mathematical Theory and Applications, 2009(4):33-37.
[10]吴健生. 基于QUEST 决策树的遥感影像土地利用分类——以云南省丽江市为例[J]. 地理研究,2012,31(11):1973-1980.
WU J S. Research on the accuracy of TM images land-use classification based on QUEST decision tree: A case study of Lijiang in Yunnan[J]. Geographical Research, 2012, 31(11):1973-1980.

备注/Memo

备注/Memo:
收稿日期:2017-11-14
作者简介:王同辉(1986-), 男,工程师,主要从事数据分析工作。
更新日期/Last Update: 2018-03-06