[1]李 炘,方 杰,宁旭斌,等.风电变流器用1 700 V/2 400 A IGBT 模块的开发与测试[J].控制与信息技术,2017,(05):74-78.[doi:10.13889/j.issn.2095-3631.2017.05.013]
 LI Xin,FANG Jie,NING Xubin,et al.Development and Test of the 1 700 V/2 400 A IGBT Module for Wind Power Converter[J].High Power Converter Technology,2017,(05):74-78.[doi:10.13889/j.issn.2095-3631.2017.05.013]
点击复制

风电变流器用1 700 V/2 400 A IGBT 模块的开发与测试()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年05期
页码:
74-78
栏目:
“IGBT联盟学术会议”专刊
出版日期:
2017-10-05

文章信息/Info

Title:
Development and Test of the 1 700 V/2 400 A IGBT Module for Wind Power Converter
文章编号:
2095-3631(2017)05-0074-05
作者:
李 炘方 杰宁旭斌余 伟
(1. 新型功率半导体器件国家重点实验室,湖南 株洲 412001;2. 株洲中车时代电气股份有限公司,湖南 株洲 412001)
Author(s):
LI Xin FANG Jie NING Xubin YU Wei
(1.State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou, Hunan 412001, China; 2. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou, Hunan 412001, China)
关键词:
风力发电风电变流器IGBT
Keywords:
wind power generation wind power converter IGBT
分类号:
TM46;TN303
DOI:
10.13889/j.issn.2095-3631.2017.05.013
文献标志码:
A
摘要:
变流器是风电机组的核心部件之一,半导体功率模块是变流器装置的基础,其性能对变流器的性能和可靠性影响很大,是风电机组能否稳定可靠运行的关键因素。文章从风电变流器用IGBT 的应用特点角度出发,主要介绍了某国产1 700V /2 400 A IGBT 的芯片性能和模块设计情况、各项动态测试情况以及在风电功率组件中的考核情况。动静态测试结果表明,该模块不仅关断尖峰电压低、RBSOA 区关断电流能力强,而且能够实现软关断特性与损耗之间的平衡。
Abstract:
Converter plays a key role in wind power systems. As the basic part of a converter, power electronic devices determine its performance and reliability, and are the key factors to decide if the wind power turbine can operating stable and reliable for longtime. This paper mainly introduced the chip performances and module design of CRRC’s 1 700 V/2 400 A IGBT, and its high suitability for wind power converter use. It also presented the IGBT dynamic test results and power test results that applied to power assembly. Dynamic and static test results show that the module has a good balance between losses and softness of module, lower overshoot voltage within the safe working area of RBSOA.

参考文献/References:

[1]丁荣军, 刘国友. 轨道交通用高压IGBT 技术特点及其发展趋势[J]. 机车电传动, 2014(1):1-6.
DING R J, LIU G Y. Technical Features and Development Trend of High-voltage IGBT for Rail Transit Traction Application[J]. Electric Drive for Locomotives 2014(1):1-6.
[2]XIANG D, RAN L, TAVNER P, et al. Condition Monitoring Power Module Solder Fatigue Using Inverter Harmonic Identification[J]. IEEE Transactions on Power Electronics, 2011, 27(1):235-247.
[3]MA K, LISERRE M, BLAABJERG F. Reactive power influence on the thermal cycling of multi-MW wind power inverter[C] // Applied Power Electronics Conference and Exposition. USA: IEEE, 2012:262-269.
[4]CHEN Z, GUERRERO J M, BLAABJERG F. A Review of the State of the Art of Power Electronics for Wind Turbines[J]. IEEE Transactions on Power Electronics, 2009, 24(8):1859-1875.
[5]黄南, 王世平, 宋自珍. 兆瓦级功率组件IGBT 失效研究[J]. 大功率变流技术, 2015(3):35-38.
 HUANG N, WANG S P, SONG Z Z. Study of the IGBT Failure in Megawatt Power Assembly[J]. High Power Converter Technology, 2015(3):35-38.
[6]曹国荣,赵燕峰. 变频器的除湿防凝露研究[J]. 变频器世界, 2011(6):129-132.
CAO G R,ZHAO Y F.Research on the Dehumidification and Anti-condensation in the Inverter[J].The World of Inverter, 2011(6):129-132.
[7]李世平,黄蓉,奉琴,等. IGBT 模块功率循环能力与可靠性试验[J]. 机车电传动, 2015(3):15-18.
LI S P, HUANG R, FENG Q, et al. Power Cycling Capability and Reliability Test of IGBT Modules[J]. Electric Drive for Locomotives, 2015(3):15-18. [8]lnfineon. Cosmic Radiation Failure Rates[S].Applying IGBTs notes. 2005.
[9]王伟胜,迟永宁,张占奎,等. GB/T 19963-2011《风电场接入电力系统技术规定》解读[J]. 中国标准化(英文版), 2016, 77(2):86-89.
[10]刘国友,罗海辉,李群锋,等. 轨道交通用750 A/6 500 V 高功率密度IGBT 模块[J]. 机车电传动, 2016(6):21-26.
LIU G Y, LUO H H, LI Q F, et al. 750 A/6 500 V High Power Density IGBT Module for Rail Transit Application[J]. Electric Drive for Locomotives, 2016(6):21-26.

相似文献/References:

[1]张宇,谭娟,徐立恩.双馈风电变流器半实物仿真平台的开发[J].控制与信息技术,2014,(06):14.[doi:10.13889/j.issn.2095-3631.2014.06.004]
 ZHANG Yu,TAN Juan,XU Lien.Development of Semi-physical Simulation Platform for Doubly-fed Wind Power Converter[J].High Power Converter Technology,2014,(05):14.[doi:10.13889/j.issn.2095-3631.2014.06.004]
[2]张杰,段绪连,张雪梅.风轮特性的电气模拟[J].控制与信息技术,2014,(04):32.[doi:10.13889/j.issn.2095-3631.2014.04.008]
 ZHANG Jie,DUAN Xu-lian,ZHANG Xue-mei.Electrical Simulation of Wind Turbine[J].High Power Converter Technology,2014,(05):32.[doi:10.13889/j.issn.2095-3631.2014.04.008]
[3]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术,2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(05):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[4]邓方林,王建良,况金园,等.双馈风力发电机轴承电流分析[J].控制与信息技术,2016,(01):58.[doi:10.13889/j.issn.2095-3631.2016.01.013]
 DENG Fanglin,WANG Jianliang,KUANG Jinyuan,et al.Analysis of Bearing Current in Doubly-fed Induction Generator for Wind Power[J].High Power Converter Technology,2016,(05):58.[doi:10.13889/j.issn.2095-3631.2016.01.013]
[5]张新宁.风电整机研发技术现状与发展趋势[J].控制与信息技术,2013,(03):1.[doi:10.13889/j.issn.2095-3631.2013.03.004]
 ZHANG Xin-ning.Technology Status and Development Trend of Wind Turbine Generation System[J].High Power Converter Technology,2013,(05):1.[doi:10.13889/j.issn.2095-3631.2013.03.004]
[6]李保国,陈燕平,蒋云富,等.全功率风电变流器并联运行关键技术研究[J].控制与信息技术,2016,(04):38.[doi:10.13889/j.issn.2095-3631.2016.04.008]
 LI Baoguo,CHEN Yanping,JIANG Yunfu,et al.Research on the Key Technologies of Parallel Operation for Full Power Wind Power Converter[J].High Power Converter Technology,2016,(05):38.[doi:10.13889/j.issn.2095-3631.2016.04.008]
[7]杨亚枢.虚拟惯量控制对提高电网一次调频稳定性的影响[J].控制与信息技术,2016,(06):52.[doi:10.13889/j.issn.2095-3631.2016.06.010]
 YANG Yashu.Effect of Virtual Inertia Control on the Stability of Primary Frequency Regulation[J].High Power Converter Technology,2016,(05):52.[doi:10.13889/j.issn.2095-3631.2016.06.010]
[8]郭 锐,叶 伟,翟大勇,等.智能信息化风电机组整机控制系统的开发[J].控制与信息技术,2017,(03):23.[doi:10.13889/j.issn.2095-3631.2017.03.005]
 GUO Rui,YE Wei,ZHAI Dayong,et al.Development of Intelligent and Information Wind Turbine Control System[J].High Power Converter Technology,2017,(05):23.[doi:10.13889/j.issn.2095-3631.2017.03.005]
[9]刘志星,胡婵娟,年珩,等.双馈风电变流器低电压穿越下Crowbar电阻的优化设计[J].控制与信息技术,2012,(01):44.[doi:10.13889/j.issn.2095-3631.2012.01.012]
 LIU Zhi-xing,HU Chan-juan,NIAN Heng,et al.Optimal Design of Crowbar Resistance for DFIG Converter During Low Voltage Ride-through[J].High Power Converter Technology,2012,(05):44.[doi:10.13889/j.issn.2095-3631.2012.01.012]
[10]张宪平,潘磊,秦明.风电电网侧变流器在不平衡电压条件下的控制研究[J].控制与信息技术,2011,(05):30.[doi:10.13889/j.issn.2095-3631.2011.05.013]
[11]冯江华.风电变流器的技术现状与发展[J].控制与信息技术,2013,(03):5.[doi:10.13889/j.issn.2095-3631.2013.03.005]
 FENG Jiang-hua.Technology Status and Development of Wind Power Converters[J].High Power Converter Technology,2013,(05):5.[doi:10.13889/j.issn.2095-3631.2013.03.005]

备注/Memo

备注/Memo:
收稿日期:2017-08-22
作者简介:李炘(1988-),女,硕士,工程师,研究方向为IGBT 应用。
更新日期/Last Update: 2017-10-09