[1]曾云峰,姚 磊,何 凯,等.基于计算流体力学的电力电子牵引变压器热分析[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.017]
 ZENG Yunfeng,YAO Lei,HE Kai,et al.Thermal Analysis of Power Electronic Traction Transformer Based on CFD[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.017]
点击复制

基于计算流体力学的电力电子牵引变压器热分析()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年04期
页码:
0
栏目:
“电力电子变压器”专刊
出版日期:
2017-08-05

文章信息/Info

Title:
Thermal Analysis of Power Electronic Traction Transformer Based on CFD
文章编号:
2095-3631(2017)04-0092-04
作者:
曾云峰姚 磊何 凯李诗怀邓文川郭宗坤
(中车株洲所电气技术与材料工程研究院,湖南株洲 412001)
Author(s):
ZENG YunfengYAO LeiHE KaiLI SihuaiDENG WenchuanGUO Zongkun
( CRRC ZIC Research Institute of Electrical Technology & Material Engineering, Zhuzhou, Hunan 412001, China)
关键词:
电力电子变压器计算流体力学模型分解热分析
Keywords:
power electronic transformer computational fluid dynamics(CFD) decomposed model thermal analysis
分类号:
TM41;O354
DOI:
10.13889/j.issn.2095-3631.2017.04.017
文献标志码:
A
摘要:
轨道车辆所用的电力电子牵引变压器(PETT)的冷却系统较为复杂,含有油冷、水冷和风冷3 部分,很难采用经验公式和理论分析进行热计算,而直接采用计算流体力学(CFD)的方法对整个系统进行仿真时要面临计算精度和计算机资源巨大的问题。文章首先采用合理的方式对PETT 模型进行分解,然后采用Fluent 和Icepak 软件分别对分解出来的水冷系统和风冷系统进行热分析,得到单个高压模块的温度场和速度场边界,最后根据该边界条件对单个高压模块进行详细的热分析。该方法可以有效解决计算精度和计算机资源的矛盾,为复杂的冷却系统热分析提供参考。
Abstract:
Cooling system of power electronic traction transformer (PETT) is complicated that consists of air cooling, water cooling and oil cooling system. It is difficult to calculate by using the traditional empirical formula and theoretical analysis, and the CFD method is incapable for simulation in the system level due to the computational cost and accuracy. In this paper, PETT model was decomposed in a reasonable way, and the water cooling system and air cooling system were analyzed by Fluent and Icepak respectively. Based on the analysis results, temperature field and velocity field boundary around a single high-voltage module were extracted and the method can effectively solve the contradiction between calculation accuracy and computational cost, and can provide guidance for thermal design of complex cooling system.

参考文献/References:

[1]潘诗锋,赵剑锋. 电力电子变压器及其发展综述[J]. 江苏电机工程,2013(6):52-54.
PAN S F,ZHAO J F. Summary of Development of Power Electronic Transformer[J]. Jiangsu Electrical Engineering, 2013(6):52-54.
[2]陈国锐,宋修威,隋强,等. 电力电子变压器的应用及其发展前景分析[J]. 今日科苑,2013(14):121.
 CHEN G R, SONG X W, SUI Q, et al. Application and Development of Power Electronic Transformer[J]. Modern Science, 2013(14):121.
[3]周铸,黄江涛,黄勇, 等. CFD 技术在航空工程领域的应用、挑战与发展[J]. 航空学报,2017,38(3):1-25.
ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: Applications challenges and development[J]. Acta Aeronautica Sinica, 2017, 38(3):1-25.
[4]刘凤荣,孟宪松,张宇, 等. 船舶机舱内热环境数值模拟[J]. 大连海事大学学报,2011,37(2):136-138.
 LIU F R, MENG X S, ZHANG Y, et al. Numerical simulation of the internal thermal environment of marine engine room[J]. Journal of Dalian Maritime University, 2011, 37(2):136-138.
[5]薄晓坤,任涛,罗俊仁, 等. 基于Icepak 的SVG 设备流体通风仿真分析[J]. 电力电容器与无功补偿,2016,37(2):22-26.
BO X K, REN T, LUO J R, et al. Simulation Analysis of FluidVentilation for SVG Equipment Based on Icepak[J]. Power Capacitor & Reactive Power Compensation, 2016, 37(2):22-26.
[6]叶茂泉,万思维,巫环科,等. 基于Icepak 的大电流开关柜热仿真[J]. 电器与能效管理技术,2015(16):27-30.
YE M Q, WAN S W, WU H K, et al. Thermal Simulation of High- Current Switch Cabinet based on Icepak[J]. Electrical & Energy Management Technology, 2015(16):27-30.
[7]包明冬,马展,崔洪江,等. 电力电子器件IGBT 用水冷板式散热器热力性能的数值模拟[J]. 内燃机车,2012(5):1-4.
BAO M D, MA Z, CUI H J, et al. Numerical simulation of water-cooled plate radiator performance for IGBT[J]. Diesel Locomotives, 2012(5):1-4.
[8] 丁杰,张平 . IGBT 水冷散热器实验与仿真[J]. 华北电力大学学报,2015(1):97-103.
DING J, ZHANG P. Experimental Research and Simulation Analysis of IGBT Water-cooled Radiator[J]. Journal of North China Electric Power University, 2015(1):97-103.
[9]丁杰,唐玉兔,忻力,等. 网格尺寸对IGBT 水冷散热器仿真结果的影响[J]. 大功率变流技术,2012 (6):26-30.
DING J, TANG Y T, XIN L, et al. Effects of Mesh Size on Simulation Results of Water-Cooling Radiator for IGBT Module[J]. High Power Converter Technology, 2012(6):26-30.
[10]丁杰,李江红,陈燕平,等. 流动状态与热源简化方式对IGBT 水冷板仿真结果的影响[J]. 机车电传动,2011(5):21-25.
DING J, LI J H, CHEN Y P, et al. Effects of Flow Regime and Heat Source Simplifications on Simulation Results for Water-Cooling Plate of IGBT[J]. Electric Drive for Locomotives, 2011(5):21-25.

相似文献/References:

[1]邓湘鄂,王弋飞,宁大龙,等.基于AC/DC/AC型电力电子变压器的电能质量改善研究[J].控制与信息技术(原大功率变流技术),2016,(03):27.[doi:10.13889/j.issn.2095-3631.2016.03.006]
 DENG Xiange,WANG Yifei,NING Dalong,et al.Research on the Power Quality Improvement Using AC/DC/AC Type Power Electronic Transformer[J].High Power Converter Technology,2016,(04):27.[doi:10.13889/j.issn.2095-3631.2016.03.006]
[2]李东旭,梁鹏程,戴龙侠,等.大型风电叶片翼型气动噪声数值模拟研究[J].控制与信息技术(原大功率变流技术),2017,(02):42.[doi:10.13889/j.issn.2095-3631.2017.02.008]
 LI Dongxu,LIANG Pengcheng,DAI Longxia,et al.Numerical Simulation of Aerodynamic Noise Generated by Large Wind Blade Airfoil[J].High Power Converter Technology,2017,(04):42.[doi:10.13889/j.issn.2095-3631.2017.02.008]
[3]李红波,张志学,赵 辉. 开关复用型脉动功率解耦电力电子变压器[J].控制与信息技术(原大功率变流技术),2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.100]
 LI Hongbo,ZHANG Zhixue,ZHAO Hui. Power Electronic Traction Transformer with Pulsating Power Decoupling by Duplicated Switches[J].High Power Converter Technology,2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.100]
[4]周廷冬,徐永海. 配电网电力电子变压器故障清除及保护技术综述[J].控制与信息技术(原大功率变流技术),2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.400]
 ZHOU Tingdong,XU Yonghai. A Survey on Fault Clearing and Protection Technology of Power Electronic Transformer in Distribution Network[J].High Power Converter Technology,2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.400]
[5]王 优,郑泽东. 一种母线电压低波动的电力电子变压器[J].控制与信息技术(原大功率变流技术),2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.300]
 WANG You,ZHENG Zedong. A Power Electronic Transformer with Low Voltage Ripple in DC Bus[J].High Power Converter Technology,2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.300]
[6]王 优,郑泽东.一种母线电压低波动的电力电子变压器[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.300]
 WANG You,ZHENG Zedong.A Power Electronic Transformer with Low Voltage Ripple in DC Bus[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.300]
[7]汪 洋,赵 楠,张捷频,等.应用于电力电子变压器的双向DC-DC 变换器综述[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.006]
 WANG Yang,ZHAO Nan,ZHANG Jiepin,et al.A Summary of Bidirectional DC-DC Converter Applied in Power Electronic Transformer[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.006]
[8]莫 染,李红波,陈 涛.基于电力电子变压器的舰船中压直流系统储能装置[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.008]
 MO Ran,LI Hongbo,CHEN Tao.Power Electronic Transformer Based Energy Storage Device for Shipboard MVDC System[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.008]
[9]宋平岗,戈 旺,朱维昌.基于电力电子变压器的牵引系统关键技术研究[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.011]
 SONG Pinggang,GE Wang,ZHU Weichang.Research on Key Technologies of Traction System Based on Power Electronic Transformer[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.011]
[10]周廷冬,徐永海.配电网电力电子变压器故障清除及保护技术综述[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.400]
 ZHOU Tingdong,XU Yonghai.A Survey on Fault Clearing and Protection Technology of Power Electronic Transformer in Distribution Network[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.400]

备注/Memo

备注/Memo:
收稿日期:2017-05-16
作者简介:曾云峰(1990-),男,工程师,主要从事变流器热设计工作。
基金项目:国家重点研发计划(2017YFB1200900)
更新日期/Last Update: 2017-08-21