[1]王 辉,粟 梅.永磁风力发电系统用矩阵式电力电子变压器[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.100]
 WANG Hui,SU Mei.Matrix-type Power Electronic Transformer for PMSG-based Wind Power Generation System[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.100]
点击复制

永磁风力发电系统用矩阵式电力电子变压器()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年04期
页码:
0
栏目:
“电力电子变压器”专刊
出版日期:
2017-08-05

文章信息/Info

Title:
Matrix-type Power Electronic Transformer for PMSG-based Wind Power Generation System
文章编号:
2095-3631(2017)04-0045-05
作者:
王 辉粟 梅
(中南大学信息科学与工程学院, 湖南 长沙 410083)
Author(s):
WANG Hui SU Mei
(School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China)
关键词:
永磁电机风力发电矩阵变换器 电力电子变压器
Keywords:
PMSG wind power generation matrix converter power electronic transformer
分类号:
TM46
DOI:
10.13889/j.issn.2095-3631.2017.04.100
文献标志码:
A
摘要:
为实现风力发电系统输入输出之间的电压等级变换和电气隔离,提出了一种基于矩阵式电力电子变压器的永磁风力发电变流器方案,其具有输入输出波形质量优良、无需储能元件、功率密度高、可靠性高、效率高和成本低等显著优点。文中对其拓扑结构和工作原理进行分析,并针对该拓扑提出一种控制策略:通过对整流级的控制实现输入侧功率因数校正,中间隔离DC-DC 变换器用于实现电压等级变换和电气隔离功能,而逆变级则完成最大风能跟踪控制和网侧功率因数控制。仿真结果证明了该方案的有效性,其非常适用于大功率永磁直驱式风力发电场合。
Abstract:
In order to achieve voltage scaling and galvanic isolation between the input side and output side of wind energy conversion system, a matrix-type power electronic transformer (PET) was proposed for PMSG-based wind energy conversion system, which has the advantages of sinusoidal input and output currents, requiring no energy storage elements, high power density, high reliability, high efficiency and low cost. After introducing the topology and operating principles, a control scheme was developed for the presented PET. With the developed control scheme, rectification stage of the PET is used to realize power factor correction at the input side, and isolated high frequency DC-DC converter is equipped to achieve voltage scaling and galvanic isolation, while the inversion stage is used for tracking the maximum power point of wind power and regulating the output power factor. Therefore, it is an attractive solution for high power PMSG-based direct-drive wind power generation system. Simulation results verified the correctness and feasibility of the method.

参考文献/References:

[1] 李辉,阳春华,邓文浪,等.矩阵变换器励磁的双馈型发电机软并网控制[J]. 中国电机工程学报,2010,30 (15):75-79.  
LI H,YANG C H,DENG W L,et al. Soft Cutting-in Control of DIFG Based on Matrix-converter-excitation System[J]. Proceedings of the CSEE,2010,30(15):75-79.
[2] SUN Y, SU M, GUI W. One novel variable-speed wind energy system based on PMSG and super sparse matrix converter[C]// Proc. IEEE International Conference on Electrical Machines and Systems (ICEMS), 2008:2384–2389.
[3] 史明明,周波,魏佳丹,等.混合励磁同步发电机– 矩阵变换器发电系统两级式电压闭环控制策略[J]. 中国电机工程学报, 2012,32 (3):1-8.  
SHI M M,ZHOU B,WEI J D,et al. Two-stage Voltage Closed Loop Control Scheme for Hybrid Excited Synchronous Generatormatrix Converter Generation System[J].Proceedings of the CSEE,2012,32(3):1-8.
[4]方华亮,黄贻煜,范澍,等. 配电系统电力电子变压器的研究[J]. 电力系统及其自动化学报,2003,15(4):27-31.  
FANG H L,HUANG Y Y,FAN S,et al. Study of Power Electronic Transformer (PET) for Distribution Power System[J]. Proceedings of the CSU-EPSA,2003,15(4):27-31.
[5] 邓卫华,张波,胡宗波. 电力电子变压器电路拓扑与控制策略研究[J]. 电力系统自动化,2003,27(20):40-44,48.  
DENG W H,ZHANG B,HU Z B. Research on the Topology and Control Scheme of Power Electronic Transformer[J]. Automation of Electric Power Systems,2003,27(20):40-44,48.
[6] CHA H J, ENJETI P N. A three-phase AC/AC high-frequency link matrix converter for VSCF applications[C]//IEEE Power Electronics Specialist Conference, 2003:1971-1976.
[7] WANG H, SU M, SUN Y,et al. Two-stage matrix converter based on third-harmonic injection technique[J]. IEEE Transactions on Power Electronics, 2016, 31(1):533-547.
[8] WANG H, SU M, SUN Y, et al. Active third-harmonic injection indirect matrix converter with dual three-phase outputs[J]. IET Power Electronics, 2016, 9(4):657-668.

相似文献/References:

[1]张杰,段绪连,张雪梅.风轮特性的电气模拟[J].控制与信息技术(原大功率变流技术),2014,(04):32.[doi:10.13889/j.issn.2095-3631.2014.04.008]
 ZHANG Jie,DUAN Xu-lian,ZHANG Xue-mei.Electrical Simulation of Wind Turbine[J].High Power Converter Technology,2014,(04):32.[doi:10.13889/j.issn.2095-3631.2014.04.008]
[2]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(04):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[3]邓方林,王建良,况金园,等.双馈风力发电机轴承电流分析[J].控制与信息技术(原大功率变流技术),2016,(01):58.[doi:10.13889/j.issn.2095-3631.2016.01.013]
 DENG Fanglin,WANG Jianliang,KUANG Jinyuan,et al.Analysis of Bearing Current in Doubly-fed Induction Generator for Wind Power[J].High Power Converter Technology,2016,(04):58.[doi:10.13889/j.issn.2095-3631.2016.01.013]
[4]张新宁.风电整机研发技术现状与发展趋势[J].控制与信息技术(原大功率变流技术),2013,(03):1.[doi:10.13889/j.issn.2095-3631.2013.03.004]
 ZHANG Xin-ning.Technology Status and Development Trend of Wind Turbine Generation System[J].High Power Converter Technology,2013,(04):1.[doi:10.13889/j.issn.2095-3631.2013.03.004]
[5]冯江华.风电变流器的技术现状与发展[J].控制与信息技术(原大功率变流技术),2013,(03):5.[doi:10.13889/j.issn.2095-3631.2013.03.005]
 FENG Jiang-hua.Technology Status and Development of Wind Power Converters[J].High Power Converter Technology,2013,(04):5.[doi:10.13889/j.issn.2095-3631.2013.03.005]
[6]杨金霞,李伟业,邹煜林,等.自带风扇冷却的永磁电机热计算方法对比分析[J].控制与信息技术(原大功率变流技术),2016,(06):7.[doi:10.13889/j.issn.2095-3631.2016.06.002]
 YANG Jinxia,LI Weiye,ZOU Yulin,et al.Comparison and Analysis of Thermal Calculation Methods for Fan-cooled Permanent Magnet Motor[J].High Power Converter Technology,2016,(04):7.[doi:10.13889/j.issn.2095-3631.2016.06.002]
[7]杨亚枢.虚拟惯量控制对提高电网一次调频稳定性的影响[J].控制与信息技术(原大功率变流技术),2016,(06):52.[doi:10.13889/j.issn.2095-3631.2016.06.010]
 YANG Yashu.Effect of Virtual Inertia Control on the Stability of Primary Frequency Regulation[J].High Power Converter Technology,2016,(04):52.[doi:10.13889/j.issn.2095-3631.2016.06.010]
[8]柯思勤.永磁电机故障诊断和容错技术概述[J].控制与信息技术(原大功率变流技术),2017,(02):11.[doi:10.13889/j.issn.2095-3631.2017.02.002]
 KE Siqin.Review on Fault Diagnosis and Fault Tolerant Control for Permanent Magnet Electrical Machines[J].High Power Converter Technology,2017,(04):11.[doi:10.13889/j.issn.2095-3631.2017.02.002]
[9]何思源.全封闭永磁同步牵引电动机冷却系统设计[J].控制与信息技术(原大功率变流技术),2012,(03):48.[doi:10.13889/j.issn.2095-3631.2012.03.010]
 HE Si-yuan.Design of the Cooling System for Fully Enclosed Permanent Magnet Synchronous Traction Motor[J].High Power Converter Technology,2012,(04):48.[doi:10.13889/j.issn.2095-3631.2012.03.010]
[10]郭 锐,叶 伟,翟大勇,等.智能信息化风电机组整机控制系统的开发[J].控制与信息技术(原大功率变流技术),2017,(03):23.[doi:10.13889/j.issn.2095-3631.2017.03.005]
 GUO Rui,YE Wei,ZHAI Dayong,et al.Development of Intelligent and Information Wind Turbine Control System[J].High Power Converter Technology,2017,(04):23.[doi:10.13889/j.issn.2095-3631.2017.03.005]
[11]王 辉,粟 梅. 永磁风力发电系统用矩阵式电力电子变压器[J].控制与信息技术(原大功率变流技术),2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.200]
 WANG Hui,SU Mei. Matrix-type Power Electronic Transformer for PMSG-based Wind Energy Conversion System[J].High Power Converter Technology,2017,(04):1.[doi:10.13889/j.issn.2095-3631.2017.04.200]

备注/Memo

备注/Memo:
收稿日期:2017-06-26
 作者简介:王辉(1984-),男,博士,讲师,主要研究方向为矩阵变换器和电力电子变压器。
基金项目:国家自然科学基金青年基金项目(61503417);国家重点研发计划(2017YFB1200900)
更新日期/Last Update: 2017-08-21