[1]王世恩,郑泽东,李永东.串联谐振双有源桥DC-DC 变换器的频域分析[J].控制与信息技术(原大功率变流技术),2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.005]
 WANG Shien,ZHENG Zedong,LI Yongdong.Frequency Domain Analysis of Dual Active Bridge DC-DC Converter with Series Resonant[J].High Power Converter Technology,2017,(04):0.[doi:10.13889/j.issn.2095-3631.2017.04.005]
点击复制

串联谐振双有源桥DC-DC 变换器的频域分析()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年04期
页码:
0
栏目:
“电力电子变压器”专刊
出版日期:
2017-08-05

文章信息/Info

Title:
Frequency Domain Analysis of Dual Active Bridge DC-DC Converter with Series Resonant
文章编号:
2095-3631(2017)04-0026-05
作者:
王世恩郑泽东李永东
(清华大学电机工程与应用电子技术系,北京 100084)
Author(s):
WANG Shien ZHENG Zedong LI Yongdong
(Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)
关键词:
DC-DC 变换器 谐振变换器 电力电子变压器 建模频域分析
Keywords:
DC-DC power conversion resonant power conversion power electronic transformer modeling frequency domain analysis
分类号:
TM46
DOI:
10.13889/j.issn.2095-3631.2017.04.005
文献标志码:
A
摘要:
中频隔离DC-DC 变换器是电力电子变压器的核心环节,其性能直接影响系统的性能和效率;串联谐振双有源桥DC-DC 变换器的开关损耗较小,且能够方便地实现能量的双向流动,非常适用于电力电子变压器。文章从频域分析入手,考虑了所有的高频谐波分量,推导了串联谐振双有源桥DC-DC 变换器的精确稳态模型,在此基础上得到了变换器的功率传递特性和软开关特性。分析结果表明,相比于传统的基频分量近似法,该分析方法在软开关的分析上有较大改善。最后通过实验验证了分析方法的准确性。
Abstract:
Isolated bidirectional DC/DC converter is the core of power electronic transformer and influences the performance and efficiency of the system. Switching losses can be reduced and bidirectional power flow can be easily achieved with the use of series resonant dual active bridge (SRDAB) DC/DC converter. Thus a precise model is required for control system and converter design. In this paper, we took all the harmonic components into consideration, and deduced a precise steady-state modeling of SRDAB. Compares to traditional first harmonic approximation (FHA) method, the new method provides more accurate zero-voltage-switching (ZVS) turn-on condition. Effectiveness of the analysis method was validated through a laboratory prototype.

参考文献/References:

[1]HUANG A Q, CROW M L, HEYDT G T, et al. The Future Renewable Electric Energy Delivery and Management (FREEDM) System:The Energy Internet[J]. Proceedings of the IEEE, 2010, 99(1):133-148.
[2]FALCONES S, AYYANAR R, MAO X. A DC–DC Multiport- Converter-Based Solid-State Transformer Integrating Distributed Generation and Storage[J]. IEEE Transactions on Power Electronics, 2013, 28(5):2192-2203.
[3]ZHAO C, WEISS M, MESTER A, et al. Power electronic transformer (PET) converter:Design of a 1.2 MW demonstrator for traction applications[C]//International Symposium on Power Electronics, Electrical Drives, Automation and Motion. IEEE, 2012:855-860.
[4]DUJIC D, ZHAO C, MESTER A, et al. Power Electronic Traction Transformer-Low Voltage Prototype[J]. IEEE Transactions on Power Electronics, 2013, 28(12):5522-5534.
[5]ZHAO C, DUJIC D, MESTER A, et al. Power Electronic Traction Transformer—Medium Voltage Prototype[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7), 3257-3268.
[6]HUBER J E , KOLAR J W. Analysis and design of fixed voltage transfer ratio DC/DC converter cells for phase-modular solid-state transformers[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2015:5021-5029.
[7]JUNG J H, KIM H S, RYU M H, et al. Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems[J]. IEEE Transactions on Power Electronics, 2013, 28(4):1741-1755.
[8]INOUE S, AKAGI H. A Bidirectional Isolated DC–DC Converter as a Core Circuit of the Next-Generation Medium-Voltage Power Conversion System[J]. IEEE Transactions on Power Electronics, 2007, 22(2):535-542.
[9]GERMAN, GARCIA, OLIVA A R. Modulation Strategy to Operate the Dual Active Bridge DC–DC Converter Under Soft Switching in the Whole Operating Range[J]. IEEE Transactions on Power Electronics, 2011, 26(4):1228-1236.
[10]KRISMER F, KOLAR J W. Closed Form Solution for Minimum Conduction Loss Modulation of DAB Converters[J]. IEEE Transactions on Power Electronics, 2012, 27(1):174-188.
[11]ZHAO B, YU Q, SUN W. Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid [J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4667-4680.
[12]HUANG J, WANG Y, LI Z, et al. Unified Triple-Phase-Shift Control to Minimize Current Stress and Achieve Full Soft- Switching of Isolated Bidirectional DC–DC Converter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7):4169-4179.
[13]HOU N, SONG W, WU M. Minimum-Current-Stress Scheme of Dual Active Bridge DC–DC Converter With Unified Phase-Shift Control[J]. IEEE Transactions on Power Electronics, 2016, 31(12):8552-8561.
[14]DUTTA S, BHATTACHARYA S. A method to measure the DC bias in high frequency isolation transformer of the dual active bridge DC to DC converter and its removal using current injection and PWM switching[C]//IEEE Energy Conversion Congress and Exposition. IEEE, 2014:1134-1139.
[15]ULRICHMURA R, DONCKER F, RIK W. Comparison of nonresonant and super-resonant dual-active ZVS-operated high-power DC-DC converters[C]//13th European Conference on Power Electronics and Applications. IEEE, 2009:1-10.
[16]ORTIZ G, BIELA J, BORTIS D, et al. 1 Megawatt, 20 kHz, isolated, bidirectional 12kV to 1.2 kV DC-DC converter for renewable energy applications[C]//Power Electronics Conference. IEEE, 2010:3212-3219.
[17]LI X, BHAT A K S. Analysis and Design of High-Frequency Isolated Dual-Bridge Series Resonant DC/DC Converter[J]. IEEE Transactions on Power Electronics, 2010, 25(4):850-862.
[18]CORRADINI L, SELTZER D, BLOOMQUIST D, et al. Minimum Current Operation of Bidirectional Dual-Bridge Series Resonant DC/DC Converters[J]. IEEE Transactions on Power Electronics, 2012, 27(7):3266-3276.
[19]DUY-DINH N, TUYEN N D, GOTO F, et al. Dual-active-bridge series resonant converter: A new control strategy using phase-shifting combined frequency modulation[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2015:1215-1222.
[20]AGAMY M, DONG D, GARCES L, et al. A High Power Medium Voltage Resonant Dual Active Bridge for MVDC Ship Power Networks[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2017, 5(1):88-99.

备注/Memo

备注/Memo:
收稿日期:2017-06-01
作者简介:王世恩(1993-),男,博士研究生,研究方向为电力电子变压器。
基金项目:北京市自然科学基金(3161001)
更新日期/Last Update: 2017-08-21