[1]戴小平,等.全烧结型SiC 功率模块封装设计与研制[J].控制与信息技术(原大功率变流技术),2016,(05):36-40.[doi:10.13889/j.issn.2095-3631.2016.05.007]
 DAI Xiaoping,,et al.Packaging Consideration and Development for Fully Sintered SiC Power Module[J].High Power Converter Technology,2016,(05):36-40.[doi:10.13889/j.issn.2095-3631.2016.05.007]
点击复制

全烧结型SiC 功率模块封装设计与研制()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2016年05期
页码:
36-40
栏目:
电力电子器件
出版日期:
2016-10-05

文章信息/Info

Title:
Packaging Consideration and Development for Fully Sintered SiC Power Module
文章编号:
2095-3631(2016)05-0036-05
作者:
戴小平1 2 3吴义伯1 2赵义敏2 3王彦刚2 3
(1. 新型功率半导体器件国家重点实验室,湖南株洲 412001;2. 株洲中车时代电气股份有限公司,湖南株洲 412001; 3. 丹尼克斯半导体公司功率半导体研发中心,英国 林肯 LN6 3LF)
Author(s):
DAI Xiaoping 1 2 3 WU Yibo 1 2 ZHAO Yimin 23 WANG Yangang 2 3
( 1. State Key Laboratory of Advanced Power Semiconductor Device, Zhuzhou, Hunan 412001, China; 2. Zhuzhou CRRC Times Electrics Co., Ltd., Zhuzhou, Hunan 412001, China; 3. R&D Centre, Dynex Semiconductor Ltd., Lincoln LN6 3LF, United Kingdom )
关键词:
碳化硅功率模块封装设计低温银烧结低电感
Keywords:
SiC power module packaging design low temperature silver sintering low stray inductance
分类号:
TN304.2+4
DOI:
10.13889/j.issn.2095-3631.2016.05.007
文献标志码:
A
摘要:
针对功率模块高可靠性、宽工作温度范围(-60 ?C ~ 200 ?C)的应用特点,研制了一种基于全烧结技术的无键合线、无底板、紧凑型平面SiC 功率模块,讨论了SiC 模块封装设计及低电感柔性PCB 互连技术;为了提高功率模块的可靠性及耐高温性能,采用低温银烧结技术替代传统钎焊焊接工艺,所研制功率模块搭载了SiC JFET 和SiC SBD 芯片组。测试结果表明,所研制的SiC 功率模块具有良好的开关性能。
Abstract:
Aiming to meet the requirements for high reliability and operating temperature of -60 ℃ to 200 ℃ , it investigated an advanced packaging design for developing a SiC-based planar power module with fully sintering technologies. The key features of the SiC power module result from the wire-less, baseplate-less, fully-sintered, compact half-bridge power switch module. The packaging considerations and flexible PCB with low parasitic inductance in this SiC-based power module were discussed. In order to improve the reliabilities and operating temperature, the low temperature sintering technology of Ag nanoparticles was selected as the alternative joining technology for assembling the designed power modules that accommodated SiC JFETs and SiC Schottky diodes. The preliminary experiment demonstrates that the designed power module with fully Ag sintering technology can achieve the electrical function of switching-on and switching-off.

参考文献/References:

[1] AGARWAL A K. An overview of SiC power devices [C]// International Conference on Power Control and Embedded Systems (ICPCES), 2010:1-4.
[2] RABKOWSKI J, PEFTITSIS D, NEE H. Silicon Carbide Power Transistors: A New Era in Power Electronics Is Initiated [J]. IEEE Industrial Electronics Magazine, 2012, 6 (2):17-26.
 [3] SCHUDERER J, VEMULAPATI U, TRAUB F. Packaging SiC Power Semiconductors-Challenges, Technologies and Strategies [C]// IEEE Workshop on Wide Band-gap Power Devices and Applications (WiPDA), 2014:18-23.
 [4] MANNAN S H, CLODE M P. Materials and processes for implementing high-temperature liquid interconnects [J]. IEEE Transactions on Advanced Packaging, 2004, 27(3):508-514.
 [5] 吴义伯,戴小平,王彦刚,等. IGBT 功率模块封装中先进互连技术研究进展 [J]. 大功率变流技术, 2015(2):6-11. WU Y B, DAI X P, WANG Y G, et al. State-of-the-art Progress of Advanced Interconnection Technology for IGBT Power Module Packaging[J]. High power converter technology, 2015(2):6-11.
 [6] WANG Y G, WU Y B, JONES S, et al. Challenges and Trends of High Power IGBT Module Packaging [C]//IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014:1-7.
 [7] WU Y B, ZHAO Y M, JONES S, et al. Applications of low temperature sintering technology as die attach for high temperature power modules [C]//IEEE International Conference on Electronic Packaging Technology (ICEPT 2014), 2014:452-457.
 [8] SEAL S, GLOVER M D, MANTOOTH H A. Nanosilver preform assisted die attach for high temperature applications [C]// IEEE Applied Power Electronics Conference and Exposition (APEC), 2015:2925-2930.
[9] YOON S, SHIOZAKI K, YASUDA S ,et al. Highly reliable nickeltin transient liquid phase bonding technology for high temperature operational power electronics in electrified vehicles [C]// IEEE Applied Power Electronics Conference and Exposition (APEC), 2012:478-482. [10] LI J F, AGYAKWA P A, JOHNSON C M. Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment[J]. Journal of Electronic Materials, 2014, 43(4):983-995.
 [11] LI J F, MANNAN S H, CLODE M P, et al. Comparison of interfacial reactions of Ni and Ni–P in extended contact with liquid Sn–Bibased solders [J]. Acta Materialia, 2007, 55(15):5057-5071.
 [12] WANG J, BESNOIN E, DUCKHAM A, et al. Room-temperature soldering with nanostructured foils [J]. Applied Physics Letters, 2003, 83(19):3987-3989.
 [13] AMAGAI M. A study of nanoparticles in Sn–Ag based lead free solders [J]. Microelectronics Reliability, 2008, 48(1):1-16.
 [14] TAKAKU Y, MAKINO K, WATANABE K, et al. Interfacial Reaction between Zn-Al-Based High-Temperature Solders and Ni Substrate [J]. Journal of Electronic Materials, 2009, 38(1):54-60.
 [15] TAKAKU Y, OHNUMA I, YAMADA Y, et al. A Review of Pb-Free High-Temperature Solders for Power-Semiconductor Devices: Bi- Base Composite Solder and Zn–Al Base Solder[J].Journal of ASTM International, 2011, 8(1):1-18.
[16] BAI J G, YIN J, ZHANG Z, et al. High-Temperature Operation of SiC Power Devices by Low-Temperature Sintered Silver Die- Attachment [J]. IEEE Transactions on Advanced Packaging, 2007, 30(3):506-510.
[17] KRAFT S, SCHLETZ A, MARZ M. Reliability of Silver Sintering on DBC and DBA Substrates for Power Electronic Applications [C]//7th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 2012:439-444.
[18] LUECHINGER C. Ribbon Bonding - A Scalable Interconnect for Power QFN Packages [C]//9th Electronics Packaging Technology Conference, Singapore, 2007:47-54.
 [19] LU G Q, LIU X, WEN S, et al. Strategies for improving the reliability of solder joints on power semiconductor devices [J]. Soldering and Surface Mount Technology, 2003, 16(2):27-40.
[20] ZHU N, VAN WYK J D, LIANG Z, et al. A study of thermal stress and intrinsic residual stress in planar metallization for integrated power modules [J]. IEEE Transactions on Industry Applications, 2005, 41(6):1603-1611.
[21] KHAN N, YOON S W, VISWANATH A G K, et al. Development of 3-D Stack Package Using Silicon Interposer for High-Power Application [J]. IEEE Transactions on Advanced Packaging, 2008, 31(1):44-50.
[22] CALATA J N, BAI J G, LIU X, et al. Three-Dimensional Packaging for Power Semiconductor Devices and Modules [J]. IEEE Transactions on Advanced Packaging, 2005, 28(3):404-412.
[23] JOHNSON C M, BUTTAY C, RASHID S J, et al. Compact Double- Side Liquid-Impingement-Cooled Integrated Power Electronic Module [C]//19th International Symposium on Power Semiconductor Devices & ICs, 2007:53-56.
 [24] MENAGER L, SOUEIDAN M, ALLARD B, et al. A Lab-Scale Alternative Interconnection Solution of Semiconductor Dice Compatible with Power Modules 3-D Integration [J]. IEEE Transactions on Power Electronics, 2010, 25(7) :1667-1671.
 [25] VAGNON E, JEANNIN P O, CR?BIER J C, et al. A Bus-Bar-Like Power Module Based on Three-Dimensional Power-Chip-on-Chip Hybrid Integration [J]. IEEE Transactions on Industry Applications, 2010, 46(5):2046-2055.

相似文献/References:

[1]吴义伯,戴小平,王彦刚,等.IGBT 功率模块封装中先进互连技术研究进展[J].控制与信息技术(原大功率变流技术),2015,(02):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
 WU Yibo,DAI Xiaoping,WANG Yangang,et al.State-of-the-art Progress of Advanced InterconnectionTechnology for IGBT Power Module Packaging[J].High Power Converter Technology,2015,(05):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
[2]王晓元,王 雄,王幸智,等.大功率模块用水冷散热器的数值模拟与试验研究[J].控制与信息技术(原大功率变流技术),2015,(02):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]
 WANG Xiaoyuan,WANG Xiong,WANG Xingzhi,et al.Numerical Simulation and Experimental Study of the Water-cooled Radiator for High Power Module[J].High Power Converter Technology,2015,(05):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]
[3]郑昌伟,常桂钦,李诚瞻.1 700 V/1 600 A 高性能SiC 混合IGBT功率模块的研制[J].控制与信息技术(原大功率变流技术),2015,(05):43.[doi:10.13889/j.issn.2095-3631.2015.05.009]
 ZHENG Changwei,CHANG Guiqin,LI Chengzhan.Development of 1 700 V/1 600 A High Performance SiC Hybrid IGBT Power Module[J].High Power Converter Technology,2015,(05):43.[doi:10.13889/j.issn.2095-3631.2015.05.009]
[4]刘建平,马振宇,孙保涛,等.两电平IGCT 功率模块母线杂散电感优化设计[J].控制与信息技术(原大功率变流技术),2015,(06):14.[doi:10.13889/j.issn.2095-3631.2015.06.003]
 LIU Jianping,MA Zhenyu,SUN Baotao,et al.Optimal Design of Stray Inductance of Busbar in Two-level IGCT Power Module[J].High Power Converter Technology,2015,(05):14.[doi:10.13889/j.issn.2095-3631.2015.06.003]
[5]王幸智,王 雄,姚 磊,等.水冷散热器鼓包原因及预防措施[J].控制与信息技术(原大功率变流技术),2016,(01):39.[doi:10.13889/j.issn.2095-3631.2016.01.009]
 WANG Xingzhi,WANG Xiong,YAO Lei,et al.Fault Analysis and Preventive Measures for Bulging of Water-cooled Radiator[J].High Power Converter Technology,2016,(05):39.[doi:10.13889/j.issn.2095-3631.2016.01.009]
[6]王晓元,王 雄,李彦涌,等.新型相变平板热管散热器的性能研究[J].控制与信息技术(原大功率变流技术),2016,(02):16.[doi:10.13889/j.issn.2095-3631.2016.02.004]
 WANG Xiaoyuan,WANG Xiong,LI Yanyong,et al.Performance Study of a New Phase Transition Flat Heat Pipe Radiator[J].High Power Converter Technology,2016,(05):16.[doi:10.13889/j.issn.2095-3631.2016.02.004]
[7]李保国,陈燕平,蒋云富,等.全功率风电变流器并联运行关键技术研究[J].控制与信息技术(原大功率变流技术),2016,(04):38.[doi:10.13889/j.issn.2095-3631.2016.04.008]
 LI Baoguo,CHEN Yanping,JIANG Yunfu,et al.Research on the Key Technologies of Parallel Operation for Full Power Wind Power Converter[J].High Power Converter Technology,2016,(05):38.[doi:10.13889/j.issn.2095-3631.2016.04.008]
[8]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[9]漆 宇,李彦涌,胡家喜,等.SiC 功率器件应用现状及发展趋势[J].控制与信息技术(原大功率变流技术),2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.05.001]
 QI Yu,LI Yanyong,HU Jiaxi,et al.Application Status of SiC Power Device and Its Development Tendency[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.05.001]
[10]刘可安,李诚瞻,李彦涌,等.SiC 器件技术特点及其在轨道交通中的应用[J].控制与信息技术(原大功率变流技术),2016,(05):13.[doi:10.13889/j.issn.2095-3631.2016.05.003]
 LIU kean,LI Chengzhan,LI Yangyong,et al.Characteristics of SiC Device and its Application in Railway Traction[J].High Power Converter Technology,2016,(05):13.[doi:10.13889/j.issn.2095-3631.2016.05.003]
[11]李诚瞻,常桂钦,彭勇殿,等.一种低感封装的1 200 V 混合碳化硅功率模块[J].控制与信息技术(原大功率变流技术),2016,(05):71.[doi:10.13889/j.issn.2095-3631.2016.05.015]
 LI Chengzhan,CHANG Guiqin,PENG Yongdian,et al.1 200 V Hybrid SiC Power Module with Low Stray Inductance[J].High Power Converter Technology,2016,(05):71.[doi:10.13889/j.issn.2095-3631.2016.05.015]

备注/Memo

备注/Memo:
收稿日期:2016-05-30
 作者简介:戴小平(1968-),男,高级工程师,主要从事大功率半导体器件的研究与开发。
基金项目:European CleanSky MatPlan Project(No:304851)
更新日期/Last Update: 2016-11-01