[1]乔岳坤,朱迎谷,严 允,等.工作级遥控潜水器的位姿跟踪S-MFAC控制[J].控制与信息技术,2018,(06):44-49.[doi:10.13889/j.issn.2096-5427.2018.06.300]
 QIAO Yuekun,ZHU Yinggu,YAN Yun,et al.S-MFAC Control of Posture and Position Tracking for Working-class ROV[J].High Power Converter Technology,2018,(06):44-49.[doi:10.13889/j.issn.2096-5427.2018.06.300]
点击复制

工作级遥控潜水器的位姿跟踪S-MFAC控制()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2018年06期
页码:
44-49
栏目:
控制理论与应用
出版日期:
2018-12-05

文章信息/Info

Title:
S-MFAC Control of Posture and Position Tracking for Working-class ROV
文章编号:
2096-5427(2018)06-0044-06
作者:
乔岳坤朱迎谷严 允罗凌波胡斌炜
(上海中车艾森迪海洋装备有限公司,上海 201306)
Author(s):
QIAO Yuekun ZHU Yinggu YAN Yun LUO Lingbo HU Binwei
CRRC SMD Shanghai Ltd., Shanghai 201306, China )
关键词:
工作级ROV位姿控制无模型控制非线性串级控制
Keywords:
working-class ROV control of posture and position model-free nonlinearity cascade control
分类号:
U674.941;TP273
DOI:
10.13889/j.issn.2096-5427.2018.06.300
文献标志码:
A
摘要:
针对工作级遥控潜水器(ROV )存在模型参数变化频繁、作业环境复杂、不确定因素众多及运动的强非线性等特性,文章提出一种S-MFAC(sigmoid-model free adaptive control)非线性串级工作级ROV位姿跟踪控制算法。其外环应用S函数的有界、平滑输出特性,将ROV位置和姿态控制指令转换为光滑的内环参考速度,满足执行器约束;内环控制器采用MFAC消除ROV系统内在扰动因素,实现各自由度速度量的稳定、准确跟踪闭环控制。文章通过搭建仿真模型,对该算法在速度跟踪和三维轨迹跟踪方面的控制有效性进行了验证。结果表明:同样在不基于ROV精确数学模型的条件下,S-MFAC控制算法比常规PID算法具有更好的动态控制效果;另外,S-MFAC控制算法由于优化了操作输入,可以减少领航员的工作强度,提高ROV作业效率。
Abstract:
In considering the frequent variation of model parameters, complicated operating environment, numerous uncertain factors and strong nonlinearity of motion in working-class ROV(remotely operation vehicle), this paper presented an S-MFAC (sigmoid-model free adaptive control) nonlinear cascade control algorithm. The outer loop of the algorithm uses the bounded, smoothing output characteristics of S-MFAC to convert the instruction of posture and position into smooth inner loop reference speed to satisfy the actuator constraints, and the inner loop controller uses MFAC to eliminate the disturbance factors in the ROV system. Stable and accurate tracking closed-loop control is realized for each degree of freedom. Control effectiveness of the algorithm in velocity tracking and 3D trajectory tracking was verified by building a simulation model. The results shows that the S-MFAC control algorithm has better dynamic control effect than the PID algorithm under the same condition without ROV precise mathematical model. In addition, the control algorithm can reduce the workload of the navigator due to the optimization of the operation input.

参考文献/References:

[1]王宇鑫. “海螺一型”ROV控制系统结构与艏向控制技术研究[D]. 杭州:浙江大学, 2012.
[2] 刘春媚. 遥控式水下机器人运动控制技术的研究[D]. 哈尔滨:哈尔滨工程大学, 2007.
[3] 周锋. 深海ROV液压推进系统的稳定性和控制方法研究[D]. 杭州:浙江大学,2015.
[4] JAVADI-MOGHADDAM J, Bagheri A. An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle[J]. Expert Systems with Applications, 2010, 37(1):647-660.
[5] PRABHAKAR S, BUCKHAM B. Dynamics modeling and control of a variable length remotely operated vehicle tether[C]// Proceedings of OCEANS 2005 MTS/IEEE. Washington DC:IEEE, 2005:1255-1262.
[6]朱康武. 作业型ROV多变量位姿鲁棒控制方法研究[D]. 杭州:浙江大学,2012.
[7]范士波. 深海作业型ROV水动力试验及运动控制技术研究[D]. 上海:上海交通大学,2013.
[8] 施生达. 潜艇操纵性[M]. 北京:国防工业出版社,1995.
[9]FOSSEN T I. Handbook of Marine Craft Hydrodynamics and Motion Control[M]. New York City:John Wiley & Sons Ltd,2011.
[10] 刘学敏,徐玉如. 水下机器人运动的S面控制方法[J]. 海洋工程,2001,19(3):81-84.
[11] 金尚泰. 无模型学习自适应控制的若干问题研究及其应用[D]. 北京:北京交通大学, 2008.
[12] 侯忠生, 金尚泰. 无模型自适应控制:理论与应用[M]. 北京:科学出版社,2013.

相似文献/References:

[1]乔岳坤,朱迎谷,严 允,等. 工作级ROV 的位姿跟踪S-MFAC 控制[J].控制与信息技术,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.300]
 QIAO Yuekun,ZHU Yinggu,YAN Yun,et al. S-MFAC Control of Posture and Position Tracking for Working-class ROV[J].High Power Converter Technology,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.300]

备注/Memo

备注/Memo:
收稿日期:2018-09-25
作者简介:乔岳坤(1992—),男,硕士研究生,从事水下机器人运动控制研究。
基金项目:国家重点研发计划(2016YFC0304104)
更新日期/Last Update: 2018-12-25