[1]蒋华平,等.单极型SiC 功率器件的最优漂移区解析模型[J].控制与信息技术,2015,(06):38-40.[doi:10.13889/j.issn.2095-3631.2015.06.008]
 JIANG Huaping,LI Chengzhan,WU Yudong.Optimum Analytical Model for the Drift Region of Silicon Carbide Uni-polar Power Device[J].High Power Converter Technology,2015,(06):38-40.[doi:10.13889/j.issn.2095-3631.2015.06.008]
点击复制

单极型SiC 功率器件的最优漂移区解析模型()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2015年06期
页码:
38-40
栏目:
电力电子器件
出版日期:
2015-12-30

文章信息/Info

Title:
Optimum Analytical Model for the Drift Region of Silicon Carbide Uni-polar Power Device
文章编号:
2095-3631(2015)06-0038-03
作者:
蒋华平 1 2李诚瞻1吴煜东1
1. 株洲南车时代电气股份有限公司,
2. 丹尼克斯半导体有限公司,
Author(s):
JIANG HuapingLI Chengzhan WU Yudong
1.Zhuzhou CSR Times Electric Co.,Ltd.,
2. Dynex Semconductor Ltd.,
关键词:
SiC单极型功率器件比导通电阻解析模型漂移区
Keywords:
SiC uni-polar power devices specific resistance analytical model drift region
分类号:
TN304.2+4
DOI:
10.13889/j.issn.2095-3631.2015.06.008
文献标志码:
A
摘要:
基于目前碳化硅(SiC)外延掺杂浓度误差较大以及成本和缺陷密度对外延厚度敏感的情况,以比导通电阻为目标优化指标,建立了适用于单极型SiC 功率器件的最优漂移区解析模型,得到了最优控制线,并采用 Synopsys/Sentaurus 软件进行了仿真验证。在此基础上进一步考虑了外延层厚度和掺杂浓度的影响,并针对常用电压等级的单极型SiC 功率器件计算了典型误差值下的最优漂移区参数。计算结果表明,对于不同耐压等级,最优漂移区大致以电压等级每增加100 V 厚度则增加1 ~ 1.2 μm 的速度变化。
Abstract:
Currently,doping concentration uniformity of epi-wafers is poor and thickness of epi-layer is sensitive to cost and defect density. An optimum analytical model for the drift region of uni-polar silicon carbide (SiC) power device and an optimum control line were developed based on the optimum target of specific resistance. The model was verified by simulation using Synopsys/Sentaurus. With consideration of the typical variations of thickness and doping concentration of epi-layer, parameters of optimum drift region were calculated for different voltage classes, which result in a 1~1.2 μm increase for every 100 V blocking voltage.

参考文献/References:

[1] Kimoto T,Cooper J A. Fundamentals of Silicon Carbide Technology [M]. Hoboken, NJ: Wiley-IEEE Press,2014: 32-33.
[2] Spiazzi G, Buso S, Citron M,et al. Performance evaluation of a Schottky SiC power diode in a boost PFC application[J].IEEE Transactions on Power Electronics, 2003, 18(6):1249-1253.
[3] Hodge S. SiC Schottky diodes in power factor correction[J]. Power Electronics Technology, 2004, 30(8):14-23.
[4] Das M K, Capell C, Grider D E, et al. 10 kV, 120 A SiC half H-bridge power MOSFET modules suitable for high frequency, medium voltage applications[J]. IEEE Energy Conversion Congress and Exposition, 2011,47(10):2689-2692.
[5] Sheng H, Chen Z, Wang F, et al. Investigation of 1.2 kV SiC MOSFET for high frequency high power applications[C]// Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition. Palm Springs,CA ,2010:1572-1577.
[6] Callanan B. Application considerations for silicon carbide MOSFETs[Z]. Cree Inc.,2011.
[7] Yamane A, Koyanagi K, Kozako M, et al. Fabrication and evaluation of SiC inverter using SiC-MOSFET[C]//IEEE 10th International Conference on Power Electronics and Drive Systems. Kitakyushu ,2013:1029-1032.
[8] Hamada K, Hino S, Miura N, et al. 3.3 kV/1500 A power modules for the world’s first all-SiC traction inverter[J].Japanese Journal of Applied Physics, 2015, 54(4s): 04DP07.
[9] Konstantinov A O, Wahab Q, Nordell N, et al. Ionization rates and critical fields in 4H silicon carbide[J]. Applied Physics Letters, 1997, 71(1):90-92.
[10] Schaffer W J, Negley G H, Irvine K G, et al. Conductivity anisotropy in epitaxial 6H and 4H SiC[J]. MRS Proceedings, 1994,339:595-600.

相似文献/References:

[1]李 云,朱世武,吴春冬,等.电动汽车电机控制器的发展[J].控制与信息技术,2015,(02):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
 LI Yun,ZHU Shiwu,WU Chundong,et al.Development of the Motor Control Unit for Electric Vehicle[J].High Power Converter Technology,2015,(06):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]

备注/Memo

备注/Memo:
收稿日期:2015-06-20
作者简介:蒋华平(1982- ),男,博士,工程师,目前主要从事 SiC SBD 和MOSFET 的研究和开发。
更新日期/Last Update: 2016-03-24